Assignment 3 solutions

1. Without torques acting on the rigid body, we can use Euler's rigid body equations

$$
\begin{aligned}
I_{1} \dot{\omega}_{1} & =\left(I_{2}-I_{3}\right) \omega_{2} \omega_{3} \\
I_{2} \dot{\omega}_{2} & =\left(I_{3}-I_{1}\right) \omega_{3} \omega_{1} \\
I_{3} \dot{\omega}_{3} & =\left(I_{1}-I_{2}\right) \omega_{1} \omega_{2}
\end{aligned}
$$

to express the time evolution of its angular velocity components, and the time evolution of the body basis vectors is given by

$$
\dot{\hat{1}}=\vec{\omega} \times \hat{1}, \dot{\hat{2}}=\vec{\omega} \times \hat{2}, \dot{\hat{3}}=\vec{\omega} \times \hat{3},
$$

where $\vec{\omega}=\omega_{1} \hat{1}+\omega_{2} \hat{2}+\omega_{3} \hat{3}$.
The finite-difference integration of the relations above can be written as

$$
\begin{aligned}
& \omega_{1}(t+\Delta t)=\omega_{1}(t)+\Delta t\left(I_{2}-I_{3}\right) \omega_{2}(t) \omega_{3}(t) / I_{1} \\
& \omega_{2}(t+\Delta t)=\omega_{2}(t)+\Delta t\left(I_{3}-I_{1}\right) \omega_{3}(t) \omega_{1}(t) / I_{2} \\
& \omega_{3}(t+\Delta t)=\omega_{3}(t)+\Delta t\left(I_{1}-I_{2}\right) \omega_{1}(t) \omega_{2}(t) / I_{3}
\end{aligned}
$$

and

$$
\begin{aligned}
& \hat{1}(t+\Delta t)=\hat{1}(t)+\Delta t(\vec{\omega}(t) \times \hat{1}(t))=\hat{1}(t)+\Delta t\left(\omega_{3}(t) \hat{2}(t)-\omega_{2}(t) \hat{3}(t)\right) \\
& \hat{2}(t+\Delta t)=\hat{2}(t)+\Delta t(\vec{\omega}(t) \times \hat{2}(t))=\hat{2}(t)+\Delta t\left(\omega_{1}(t) \hat{3}(t)-\omega_{3}(t) \hat{1}(t)\right) \\
& \hat{3}(t+\Delta t)=\hat{3}(t)+\Delta t(\vec{\omega}(t) \times \hat{3}(t))=\hat{3}(t)+\Delta t\left(\omega_{2}(t) \hat{1}(t)-\omega_{1}(t) \hat{2}(t)\right) .
\end{aligned}
$$

Using Python as an example, we can time-evolve the system for one orbit:

```
import numpy as np
I1, I2, I3 = 1, 2, 3
one = np.array([1, 0, 0])
two = np.array([0, 1, 0])
three = np.array([0, 0, 1])
omega0 = np.array([1., 1., 0.9])
omega = np.copy (omega}0
dt = 0.001
diff = 0.
T = 0.
```

```
# exit the while loop when diff < 0.01 and T > 1.
while (diff >= 0.01 or T <= 1.):
    w1, w2, w3 = omega[0], omega[1], omega[2]
    new_w1 = w1 + dt*(I2-I3)*w2*w3/I1
    new_w2 = w2 + dt*(I3-I1)*w3*w1/I2
    new_w3 = w3 + dt*(I1-I2)*w1*w2/I3
    new_one = one + dt*(w3*two - w2*three)
    new_two = two + dt*(w1*three - w3*one)
    new_three = three + dt*(w2*one - w1*two)
    omega = np.array([new_w1, new_w2, new_w3])
    one = np.copy(new_one)
    two = np.copy(new_two)
    three = np.copy(new_three)
    diff = 0.
    for i in xrange(3):
        diff += (omega[i]-omega0[i])**2
    diff = np.sqrt(diff)
    T += dt
U = np.zeros((3, 3))
U[0] = np.copy(one)
U[1] = np.copy(two)
U[2] = np.copy(three)
trace = U[0][0] + U[1][1] + U[2][2]
theta = np.arccos((trace-1)/2)
print T
print U
print np.dot(U, U.T)
print theta
```

The program gives us

$$
\begin{aligned}
T & =7.22, \\
U & =\left[\begin{array}{ccc}
-0.682 & -0.141 & 0.730 \\
0.739 & -0.239 & 0.642 \\
0.080 & 0.967 & 0.257
\end{array}\right], \\
U U^{T} & =\left[\begin{array}{ccc}
1.018 & -0.002 & -0.003 \\
-0.002 & 1.015 & -0.007 \\
-0.003 & -0.007 & 1.008
\end{array}\right], \\
\theta & =2.55 \mathrm{rad}
\end{aligned}
$$

2. Assume that the ladder has length L and mass M. The kinetic energy of the ladder can be separated into the translational part $T_{\text {trans }}$ and rotational part $T_{\text {rot }}$. As the wall has position $w(t)$, the position vector of the center of mass of the ladder can be expressed by

$$
\mathbf{r}=\left(w(t)+\frac{L}{2} \sin \theta\right) \hat{x}+\frac{L}{2} \cos \theta \hat{y} .
$$

Taking the time derivative, we obtain the velocity

$$
\dot{\mathbf{r}}=\left(\dot{w}(t)+\frac{L}{2} \dot{\theta} \cos \theta\right) \hat{x}-\frac{L}{2} \dot{\theta} \sin \theta \hat{y} .
$$

The translational kinetic energy is then given by

$$
T_{\text {trans }}=\frac{M}{2} \dot{\mathbf{r}} \cdot \dot{\mathbf{r}}=\frac{M}{2}\left[\dot{w}(t)^{2}+\dot{w}(t) \dot{\theta} L \cos \theta+\frac{L^{2}}{4} \dot{\theta}^{2}\right] .
$$

The rotational kinetic energy is given by

$$
T_{\text {rot }}=\frac{1}{2} I \dot{\theta}^{2}=\frac{1}{2} \frac{M L^{2}}{12} \dot{\theta}^{2} .
$$

Therefore, the total kinetic energy

$$
T=T_{\text {trans }}+T_{r o t}=\frac{M}{2}\left[\dot{w}(t)^{2}+\dot{w}(t) \dot{\theta} L \cos \theta+\frac{L^{2}}{3} \dot{\theta}^{2}\right] .
$$

The potential energy V can be written as

$$
V=M g \frac{L}{2} \cos \theta,
$$

so the Lagrangian is given by

$$
\mathcal{L}=T-V=\frac{M}{2}\left[\dot{w}(t)^{2}+(\dot{w}(t) \dot{\theta}-g) L \cos \theta+\frac{L^{2}}{3} \dot{\theta}^{2}\right] .
$$

Taking derivative with respect to θ and $\dot{\theta}$ respectively,

$$
\begin{aligned}
& \frac{\partial \mathcal{L}}{\partial \theta}=-\frac{M}{2}(\dot{w}(t) \dot{\theta}-g) L \sin \theta \\
& \frac{\partial \mathcal{L}}{\partial \dot{\theta}}=\frac{M}{2}\left[\dot{w}(t) L \cos \theta+\frac{2}{3} L^{2} \dot{\theta}\right],
\end{aligned}
$$

and the equation of motion

$$
\begin{aligned}
0 & =\frac{d}{d t} \frac{\partial \mathcal{L}}{\partial \dot{\theta}}-\frac{\partial \mathcal{L}}{\partial \theta} \\
& =\frac{M}{2}\left[\ddot{w}(t) L \cos \theta-g L \sin \theta+\frac{2}{3} L^{2} \ddot{\theta}\right] .
\end{aligned}
$$

For the special solution that θ remains constant, the equation of motion becomes

$$
0=\frac{M}{2} L(\ddot{w}(t) \cos \theta-g \sin \theta),
$$

so the position of the wall must satisfy

$$
\ddot{w}(t)=g \tan \theta,
$$

or

$$
w(t)=\frac{1}{2} g \tan \theta t^{2}+a t+b,
$$

where a and b are constants determined by the initial conditions.

