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Assignment 3 solutions

1. Without torques acting on the rigid body, we can use Euler’s rigid body equations

Loy = (I — B)wws
Loy = (I3 — I1)wsw
Loz = (I — h)wiw?

to express the time evolution of its angular velocity components, and the time evolution
of the body basis vectors is given by

1=dx1,2=03x%x2, 3=0x3,

where o =w; 1 +wr 2 + w3 3.

The finite-difference integration of the relations above can be written as

w(t+Ar) = w(t) + At (I — Iz) wa (1) w3(1)/1;
wo(t +At) = wa(t) + At (I3 = It) ws3(t) wi(t)/ ]
w3(t + At) = w3(t) + At (I} = L) wi (1) wa(2)/13

and

1+ A = 10) + A1 (B() x 1(0)) = 1(r) + At (w3(1) 2(1) — wa(2) 3(2))
2t + Ar) = 2(1) + Ar (B(1) X 2(2)) = 2(1) + At (w1 (1) 3(2) — w3(2) 1(2))
3t + Ar) = 3(1) + Ar (B(1) X 3()) = 3(1) + At (w2(1) 1) — w1 (1) 2(2)) .

Using Python as an example, we can time-evolve the system for one orbit:

import numpy as np

I1, 12, 13 =1, 2, 3

one = np.array([1l, 0, 0])

two = np.array([0, 1, 0])

three = np.array([0, 0, 1])
omega® = np.array([1l., 1., 0.9])
omega = np.copy(omega0®)

dt = 0.001
diff = 0.
T =0.
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# exit the while loop when diff < ©.01 and T > 1.
while (diff >= 0.01 or T <= 1.):
wl, w2, w3 = omega[0], omegal[l], omega[2]

new_wl = wl + dt*(I2-I3)*w2*w3/I1
new_w2 = w2 + dt*(I3-I1)*w3*wl/I2
new_w3 = w3 + dt*(I1-I2)*wl*w2/I3

new_one = one + dt*(w3*two - w2*three)
new_two = two + dt*(wl*three - w3*one)
new_three = three + dt*(w2*one - wl*two)

omega = np.array([new_wl, new_w2, new_w3])
one = np.copy(new_one)

two = np.copy(new_two)

three = np.copy(new_three)

diff = 0.
for i in xrange(3):
diff += (omega[i]-omega®[i])**2
diff = np.sqrt(diff)
T += dt

U = np.zeros((3, 3))

U[®] = np.copy(one)

U[1] np.copy (two)

U[2] np.copy(three)

trace = U[O][0] + U[1][1] + U[2]1[2]
theta = np.arccos((trace-1)/2)

print T

print U

print np.dot(U, U.T)
print theta

The program gives us
T=1722,

[-0.682 —0.141 0.730
U=10.739 -0.239 0.642|,
| 0.080 0.967 0.257

[ 1.018  —-0.002 —0.003
vuT = 1-0.002 1.015 -0.007],
-0.003 -0.007 1.008

0 =255rad.
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2. Assume that the ladder has length L and mass M. The kinetic energy of the ladder can
be separated into the translational part 73.,,s and rotational part 7,,,. As the wall has
position w(t), the position vector of the center of mass of the ladder can be expressed

by

L L
r= (w(t)+§sin9))2+500s9§z.

Taking the time derivative, we obtain the velocity
L. L.
r=(w()+ —60cosf) X — —6Osinf .
2 2
The translational kinetic energy is then given by

M M . L? .
Tirans = ? r-r= ? W(l)z +w(t)6 LcosO + Z 92

The rotational kinetic energy is given by

1 ., 1 ML>,
Ty = = 16* = - —— 67

2 2 12
Therefore, the total kinetic energy

M 5 L ,
T =Thans + Tror = X w(t)+w()0 Lcosb + 3 0

The potential energy V can be written as
L
V=Mg —cosb,
2
so the Lagrangian is given by

2
L=T-V= % [W(t)2+(W(t)9—g)Lcose+%92] .

Taking derivative with respect to 6 and 6 respectively,

oL M . .

20" 2 (w(t)8 — g) Lsin6

0 M 2 5.
a—g == [W(t) Leost + 3 L29] ,

and the equation of motion

_d 9L oL
Cdt 9 06
M | . 2 25
=7 w(t)LcosH—gLs1n6’+§L 0| .
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For the special solution that § remains constant, the equation of motion becomes

0= % L (W(t)cosf — gsinf),
so the position of the wall must satisfy
w(t) = gtanf,
or

1
w(t) = 5gtan0t2+at+b,

where a and b are constants determined by the initial conditions.



