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Assignment 3 solutions

1. Without torques acting on the rigid body, we can use Euler’s rigid body equations

I1ω̇1 = (I2 − I3)ω2ω3

I2ω̇2 = (I3 − I1)ω3ω1

I3ω̇3 = (I1 − I2)ω1ω2

to express the time evolution of its angular velocity components, and the time evolution
of the body basis vectors is given by

˙̂1 = ~ω × 1̂, ˙̂2 = ~ω × 2̂, ˙̂3 = ~ω × 3̂ ,

where ~ω = ω1 1̂ + ω2 2̂ + ω3 3̂ .
The finite-difference integration of the relations above can be written as

ω1(t + ∆t) = ω1(t) + ∆t (I2 − I3) ω2(t) ω3(t)/I1

ω2(t + ∆t) = ω2(t) + ∆t (I3 − I1) ω3(t) ω1(t)/I2

ω3(t + ∆t) = ω3(t) + ∆t (I1 − I2) ω1(t) ω2(t)/I3

and

1̂(t + ∆t) = 1̂(t) + ∆t (~ω(t) × 1̂(t)) = 1̂(t) + ∆t (ω3(t) 2̂(t) − ω2(t) 3̂(t))

2̂(t + ∆t) = 2̂(t) + ∆t (~ω(t) × 2̂(t)) = 2̂(t) + ∆t (ω1(t) 3̂(t) − ω3(t) 1̂(t))

3̂(t + ∆t) = 3̂(t) + ∆t (~ω(t) × 3̂(t)) = 3̂(t) + ∆t (ω2(t) 1̂(t) − ω1(t) 2̂(t)) .

Using Python as an example, we can time-evolve the system for one orbit:

import numpy as np
I1, I2, I3 = 1, 2, 3
one = np.array([1, 0, 0])
two = np.array([0, 1, 0])
three = np.array([0, 0, 1])
omega0 = np.array([1., 1., 0.9])
omega = np.copy(omega0)

dt = 0.001
diff = 0.
T = 0.
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# exit the while loop when diff < 0.01 and T > 1.
while (diff >= 0.01 or T <= 1.):
w1, w2, w3 = omega[0], omega[1], omega[2]
new_w1 = w1 + dt*(I2-I3)*w2*w3/I1
new_w2 = w2 + dt*(I3-I1)*w3*w1/I2
new_w3 = w3 + dt*(I1-I2)*w1*w2/I3

new_one = one + dt*(w3*two - w2*three)
new_two = two + dt*(w1*three - w3*one)
new_three = three + dt*(w2*one - w1*two)

omega = np.array([new_w1, new_w2, new_w3])
one = np.copy(new_one)
two = np.copy(new_two)
three = np.copy(new_three)

diff = 0.
for i in xrange(3):
diff += (omega[i]-omega0[i])**2

diff = np.sqrt(diff)
T += dt

U = np.zeros((3, 3))
U[0] = np.copy(one)
U[1] = np.copy(two)
U[2] = np.copy(three)
trace = U[0][0] + U[1][1] + U[2][2]
theta = np.arccos((trace-1)/2)

print T
print U
print np.dot(U, U.T)
print theta

The program gives us

T = 7.22 ,

U =


−0.682 −0.141 0.730
0.739 −0.239 0.642
0.080 0.967 0.257


,

UUT =



1.018 −0.002 −0.003
−0.002 1.015 −0.007
−0.003 −0.007 1.008


,

θ = 2.55 rad .
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2. Assume that the ladder has length L and mass M . The kinetic energy of the ladder can
be separated into the translational part Ttrans and rotational part Trot . As the wall has
position w(t), the position vector of the center of mass of the ladder can be expressed
by

r = (w(t) +
L
2

sin θ) x̂ +
L
2

cos θ ŷ .

Taking the time derivative, we obtain the velocity

ṙ = (ẇ(t) +
L
2
θ̇ cos θ) x̂ −

L
2
θ̇ sin θ ŷ .

The translational kinetic energy is then given by

Ttrans =
M
2

ṙ · ṙ = M
2

[
ẇ(t)2 + ẇ(t)θ̇ L cos θ +

L2

4
θ̇2
]
.

The rotational kinetic energy is given by

Trot =
1
2

I θ̇2 =
1
2

ML2

12
θ̇2 .

Therefore, the total kinetic energy

T = Ttrans + Trot =
M
2

[
ẇ(t)2 + ẇ(t)θ̇ L cos θ +

L2

3
θ̇2
]
.

The potential energy V can be written as

V = Mg
L
2

cos θ ,

so the Lagrangian is given by

L = T − V =
M
2

[
ẇ(t)2 + (ẇ(t)θ̇ − g) L cos θ +

L2

3
θ̇2
]
.

Taking derivative with respect to θ and θ̇ respectively,

∂L

∂θ
= −

M
2

(ẇ(t)θ̇ − g) L sin θ

∂L

∂θ̇
=

M
2

[
ẇ(t) L cos θ +

2
3

L2θ̇

]
,

and the equation of motion

0 =
d
dt

∂L

∂θ̇
−
∂L

∂θ

=
M
2

[
ẅ(t)L cos θ − gL sin θ +

2
3

L2 θ̈

]
.
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For the special solution that θ remains constant, the equation of motion becomes

0 =
M
2

L (ẅ(t) cos θ − g sin θ) ,

so the position of the wall must satisfy

ẅ(t) = g tan θ ,

or

w(t) =
1
2
g tan θ t2 + at + b ,

where a and b are constants determined by the initial conditions.


