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Assignment 2 solutions

Recall that the total angular velocity @ of the ring that rolls clockwise without slipping
is anti-parallel to the position vector R of the point of contact. Consider the body frame
S’ with its basis vector 3 parallel to the axis of the ring and 1 always aligning with .
Assume that the ring has linear mass density A = M/(2xR). The summation of the
formula (4.17) in Lecture 4 becomes an integral:

I = fdm ((r-r)l—rr)

2
= /lRf do ((r-r)l —rr),
0

where

2w 2r
f de (r-r)l :f do R* 1 = 2z7R*(11 + 22 + 33)
0 0

2r 2r
f do (rr) = R? f do (cos 6 1+sin@ 2)(cos 61+sin6 2)
0 0

2
= R? f do (cos2 6 11 + cos @ sin 6 (ii + Qi) +sin” @ 22)
0
= 7R* (11 + 22).
‘We obtain

R> . an AA
> (11 + 22 + 2 33).

I'=
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In the body frame §’, the total angular momentum has the form &’ = w’ 1, so the
angular momentum L’ of the ring in S’ can be expressed as

MR> ,. MR> _,
== wl= w

Applying orthogonal transformation back to the space frame S, we have

L'=I-&

MR?
L=
2

-

w.

From the first assignment, the total angular momentum & in the space frame S can be
expressed as

@(t) = Qsina [cos @ cos(Qt) £ + cos a sin(Qt) § + sina 2],

if we assume that ¢ lies on xz plane at 7 = 0. Hence, the angular momentum L becomes
R2
L(¢) = —5— Qsina [cos @ cos(Qt) £ + cos asin(Qt) § + sina 2],
and the torque N is given by
, MR?
N() = L) = > Q2 cos a sin a(— sin(Q) £ + cos(Qr) §)

MR?
=——QZX0.
2
Because the center of mass of the ring stays fixed, we only expect a normal force

F=M g Z at the point of contact. We thus have

—» - ) MgR MgR
N(t) =Ry xF=(RE)yxMg2) =288 sxg= 280 55
w w Qsin a
MR? .
= T Q 2 X w.
The angular velocity Q is then given by
2
Q=425
Rsina

At tilt angle «, the potential energy V («) of the system is given by

V(a) = MgRsina.
Because the center of mass of the ring stays fixed, only the rotational part contribute to
the kinetic energy.

T@)=-w-1-0

1 1 1
&-L= 1 MR*w? = 1 MR*Q?sin’ a = 5 MgRsina.

==
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Therefore, we have the total energy E(a)
3 :
E(o)=V(o)+T(a) = 3 MgR sin «,
and we can express the angular velocity €2 as a function of E by

3Mg?

Q(E) = |~

Suppose friction decreases the total energy E linearly to zero with time at the rate
E(t) = E(0) — kt

the angular velocity Q will then increase at the rate

3Mg?

QO=\E0 —k°

2. The angular momentum L is given by
L= ) (Ro+r)x (miiy)
= Zl:m,- R+1) X (R+&X1;)
- (lz:m,-) RxR+ (Zmiri) xR+ R x (émeiri) +Zml—rl— X (& X 17)
:MleR+Zm,~r,~l>< (@ X17). | |
i
The cross terms go to zero because of the center of mass property
0= Z m;r;.
When R is at rest, R = 0, and
L= Zmirix(a—))xri)
i
= ) mi(@(r w0 ~ xi(r; - &)
= Zl]mi((r,- r)l-rr)-0o=1-0.
i

3. Applying time derivative to

I1=1 ii+1222+1333,
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we have . ) ) ) ) )
I=0 A1+11)+ L (22+22) + I; (33 + 33)
from the fact that the body-fixed principal moments of inertia are time independent.

Recall that the time evolution in space frame of an arbitrary point r of a rigid body
obeys the rule
X 0 -w; wy]|]|x
r=|y w, 0 —wy|l|y|=dxr,
Z

—wy Wy 0
MH+il=@xDi+i@xi)=@xDi-i1d xa).

We can hence simplify I as

SO

I=L[@BxDI-1Ax)]+DL[(G%x2)2-20%xd)]
+L[(3x3)3-33%xad)]
—oxI-Ixa. (1)
Substituting A R R
6320)1 1+w22+w3 3,

into Eq. (1), we obtain

. 0 w3l =) w (I3 - 1)
I=|ws3(l; — D) 0 wi(h - h)|.
wry(l3 — 1) wi( —1I3) 0

e 1 <bh<Iz:
I=0whenw; =w; =w3;=0.

o 11 = 12 = 13 .
I = O for arbitrary values of (w;, wj, w3).
e [ =L < 13 :
0 0 wr(l3 — 1)
I= 0 0 wi(h —I)|,
wry(l3 = 1) wi(—13) 0

and I = 0 when w; = w> = 0, where the symmetric top spins about its own axis
at the angular velocity ws without precession.

Consider the body frame with its origin at the center of mass of the cylinder, and its
basis vector 3 parallel to the axis of the cylinder. The moment of inertia tensor I is
given by

I:fdm (r-r)l=rr).
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e

For an arbitrary pointr = r’ cos ¢ 1 + 7/ sin¢ 2 + z 3,
h/2 r 2
fdm (r-r)l = f f f pr'dr de dz (r'* + 2%l
-h2 Jo Jo
1
=2 p (h+ = A
h/2 r 2r . o o
f dmrr = f f f prdr’ d¢dz [r’2 cos’> ¢ 11 + r?sin® ¢ 22 + 72 33
~h/2 Jo Jo

+r?cos¢sing (12 + 21) + r'zcos ¢ (13 + 31) + r'zsin ¢ (23 + 33) ]

h/2 r 2w o A A
= f f f pr'dr' d¢ dz [r’2 cos® ¢ 11 + r?sin* ¢ 22 + 7% 33 ]
-2 Jo Jo
7T 4 AN A A 7T 2 3 A A
=— h (A1 +22)+ — h” 33.
1 prh (11 + 22) + B or
Note that

2r 2r 2n
f dpcos¢ = f dgsing = f d¢cos psing = 0.
0 0 0

We obtain the moment of inertia tensor I as

1 AA A A AA
1= %p (h+ 520 A1+ 22) + g o r*h 33,

When h/r = V3,
I= 118 oh® (11 + 22 + 33),

whose rotational behavior is indistinguishable from a sphere.



