Physics 3318, Spring 2017

Assignment 13 solutions

1. The Lagrangian of a relativistic string is given by
L=\/-a%Pa,g,

apf eab a B
a’f = — 0,5%0ps”.

V2

To simplify the Euler-Lagrange equation:
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we start with the argument of the partial derivative:
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In the second last line above, we swap the indices of €’ and a, g at the same time

because they are both antisymmetric.
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Therefore,

oL
0= 0 (a(aas%)

- 24, (eaba%ﬁabsﬂ)
«/E“b(a( ) O ﬂ+—aa,,s)
V2 b (6a( ) Ops )

because 0,57 = OpysP.

We can further rewrite the above equation as
0= e (2,(52) 05"
= ab (8 (— )gngvﬁ Ops )

= 8.0 €00, ( ) (OpSy).

Since v is only a dummy variable in summation, we can change v to 8. Moreover,
8ua is nonzero only when « = u. We thus obtain the equation of motion for
relativistic strings:

0= €2 (9,v*P) (Opsp).

2. With the world surface specified by
s¥(x,t) = (ct, x, y(x,1), 0),
we can readily get its two tangent vectors
= (0, 1, dyy, 0)
0:sY = (c, 0, dyy, 0).
From these we can calculate the square of the Lagrangian:
L = —q%B Ao
= (0x590150)% — (Ox5" 0x50) (0,5 D54
= (@) (3y)* = ((3:9)” + D((@y)? = )
= A1+ (0:3)) = (0)?,

and the action:

Siv1 = [ e+ 0 - )2 dva

_ f L(dyy, dy) dxdt.
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Hereafter, we will set ¢ = 1 by suitably choosing the units. Substituting L(d.y, 0;y)
into the two-variable Euler-Lagrange equation:
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we have
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Note that this is the wave equation for the simple elastic string with some additional
cubic terms.

Substituting the an arbitrary right-running wave y = f(x—t) into the above equation,
we have

0=(f"(x=0) - (-D*f"(x=1) - (—1)2((f’(x -0 f"(x = 1)

20" (x =) (x =) + (f(x =) f (x - t)) (1)
= O’

which means that an arbitrary right-running wave y = f(x — ¢) is a solution to the
equation of motion. Because Equation (1) is still satisfied under the transformation
—1 — 1, an arbitrary left-running wave y = g(x+1) is also a solution to the equation
of motion.

However, due to the additional cubic terms the linear combination y = af(x —¢) +
Bg(x +t) is not a solution. To show this explicitly, we substitute y = af(x — 1) +
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Bg(x + t) into the second parenthesis of the equation of motion, and we obtain

2 62 32
(Oy )——20 atyﬁu,y)z—

= (af "+ B (af” + Bg”) = 2af + g af - g af” - B")
+ (af' - Bg)*(af” + Bg")

=4ap (a(f)’g" + B f")

#0.

3. Because the stress-energy tensor 74 (x) only has x dependence in the delta function,
we have

057 ) = [ (Ldp d) v'7v, P00 (s - 5. )
= f dp dg v a,” 955" (x - s(p. )
1
= — f dp dg v*” (0ps,, 0,sP — 0,5, Gpsﬁ) 956" (x - s(p, q))
V2
1
=5 f dp dg v (=0psy 046" (x = 5(p.q)) + Ogsy 0,0* (x = 5(p. 0))) .
Here, we have applied the chain rule

320*(x = 5(p, @) = —045” 35  (x — 5(p, q)).

Applying integration by part, we have

f dp dg v (85, 0,6*(x = $(p. ) = Bpsy 346" (x = 5(p. @)

= qu (v‘”’ 05y 5*(x - s(p, q)))[z - f dp (v‘” Opsy §*(x - s(p, CI)))|q2

q1
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By having x avoid the boundaries of the world surface, the first two terms vanish,
and d5T*P (x) becomes

9pTF (x) = ‘% f dp dq |3 (v ysy) = 0, ("7 9psy )] 6" (x = s(p. )

= \r dp dq [(3,v") (045y) = (0™ (,5,)] 8*(x = s(p. 0))

1
\/—

dp dq [€(0av"")(psy)] 6*(x = s(p.9))

= 0.



