Physics 6561 Fall 2017 Problem Set 11 Solutions

Amir Tajdini
at734@cornell.edu

Non-adiabatic loss from a magnetic trap
Using the results of the last problem of assignment 10 and Fermi's Golden Rule, complete the calculation begun in lecture, of the differential rate

$$
\begin{equation*}
\frac{d \Gamma}{d \Omega}=C f(\theta, \phi) e^{-2 \omega_{p} / \omega_{0}} \tag{1.1}
\end{equation*}
$$

at which the trapped spin- $1 / 2$ particle exits the trap along polar angles (θ, ϕ) with respect to the direction of the magnetic field at the center of the trap. Express C only in terms of fundamental constants, the particle mass m and magnetic moment μ, and the oscillator and precession frequencies $\left(\omega_{0}\right.$ and $\left.\omega_{p}\right)$ instead of the trap parameters (isotropic case).
Interpret the angular function $f(\theta, \phi)$ in terms of a conservation law.

Due to Chris Wilson, edited by Amir

Our initial state, which is the ground state is given by

$$
\begin{equation*}
|\uparrow, n=0\rangle=C|\uparrow\rangle e^{-\frac{-m \omega_{0}}{2 \hbar}|\vec{x}|^{2}} \tag{1.2}
\end{equation*}
$$

where one can find normalization constant C by normalization of wavefunction

$$
\begin{array}{ll}
\langle\uparrow, n=0 \mid \uparrow, n=0\rangle=1 & |C|^{2}\langle\uparrow \mid \uparrow\rangle \int e^{-\frac{-m \omega_{0}}{\hbar}|\vec{x}|^{2}} d^{3} x=1 \\
|C|^{2}\left(\frac{\pi \hbar}{m \omega_{0}}\right)^{3 / 2}=1 & C=\left(\frac{m \omega_{0}}{\pi \hbar}\right)^{3 / 4} \tag{1.3}
\end{array}
$$

While final states are plane wave states:

$$
\begin{equation*}
|\downarrow, \vec{k}\rangle=\frac{1}{\sqrt{V}} e^{i \vec{k} \cdot \vec{x}}|\downarrow\rangle \tag{1.4}
\end{equation*}
$$

Where V is the volume of space.
From the previous homework, we know interaction hamiltonian has the form

$$
\begin{equation*}
\hat{H}_{i n t}=-\frac{\hbar^{2}}{2 m}(\nabla \cdot \mathbf{A}+\mathbf{A} \cdot \mathbf{A}+2 \mathbf{A} \cdot \nabla) \tag{1.5}
\end{equation*}
$$

To lowest order in $1 / B$, only the $2 \mathbf{A} \cdot \nabla$ term has off-diagonal terms and hence only this term contributes to transition amplitude. More explicitly, we have

$$
A_{x}=\frac{\beta}{2 B}\left[\begin{array}{cc}
0 & -1 \tag{1.6}\\
1 & 0
\end{array}\right] \quad A_{y}=\frac{\beta}{2 B}\left[\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right] \quad A_{z}=0
$$

As it's derived in the lecture, Fermi's golden rule determines the transition amplitude from up state to down state as following

$$
\begin{equation*}
\left.\frac{d \Gamma}{d \Omega}=\frac{2 \pi}{\hbar} \frac{V k^{2}}{(2 \pi)^{3}}\left|\frac{d k}{d E_{F}}\right|\left|\langle\uparrow, n=0| \hat{H_{\text {int }}}\right| \downarrow, \vec{k}\right\rangle\left.\right|^{2} \tag{1.7}
\end{equation*}
$$

where E_{F} is the Fermi energy, and \vec{k} denotes momentum of particles

$$
\begin{equation*}
E_{F}(k)=\frac{\hbar^{2} k^{2}}{2 m} \quad \Rightarrow\left|\frac{d E_{F}}{d k}\right|=\frac{\hbar^{2} k}{m} \tag{1.8}
\end{equation*}
$$

Since Fermi's golden rule equates initial energies to final energies, energy gap should be equal to energy of particles (this assumes $\omega_{p} \gg \omega_{0}$, so we can ignore zero energy of initial state). Thus,

$$
\begin{equation*}
\frac{\hbar^{2} k^{2}}{2 m}=\hbar \omega_{p} \quad \Rightarrow \quad k=\left(\frac{2 m \omega_{p}}{\hbar}\right)^{1 / 2} \tag{1.9}
\end{equation*}
$$

Now we only need to compute $\left.\left|\langle\uparrow, n=0| \hat{H}_{\text {int }}\right| \downarrow, \vec{k}\right\rangle \mid$:

$$
\begin{align*}
& \langle\uparrow, n=0| \hat{H_{i n t}}|\downarrow, \vec{k}\rangle=\frac{\hbar^{2} C^{\star}}{m \sqrt{V}}\langle\uparrow, n=0| \hat{A}_{x} \partial_{x}+\hat{A}_{y} \partial_{y}+\hat{A}_{z} \partial_{z}|\downarrow, \vec{k}\rangle \\
& =\int d^{3} x e^{-\frac{m \omega_{0}}{2 \hbar} \vec{x}^{2}} e^{i \vec{k} \cdot \vec{x}} \frac{\hbar^{2} C^{\star}}{m \sqrt{V}}\langle\uparrow| i k_{x} \hat{A}_{x}+i k_{y} \hat{A}_{y}|\downarrow\rangle \\
& \frac{\hbar^{2} C^{\star}}{m \sqrt{V}} \int d^{3} x e^{-\frac{m \omega_{0}}{2 \hbar} \vec{x}^{2}+i \vec{k} \cdot \vec{x}}\left(\frac{\beta}{2 B}\left(-i k_{x}+k_{y}\right)\right) \\
& =\frac{\hbar^{2} \beta C^{\star}}{2 m B \sqrt{V}}\left(-i k_{x}+k_{y}\right) \int d^{3} x e^{-\frac{m \omega_{0}}{2 \hbar}\left(\vec{x}+i \frac{\hbar}{m \omega_{0}} \vec{k}\right)^{2}-\frac{\hbar^{2} k^{2}}{2 m \omega_{0}}} \\
& \frac{\hbar^{2} \beta C^{\star}}{2 m B \sqrt{V}}\left(-i k_{x}+k_{y}\right) \sqrt{\frac{2 \pi \hbar}{m \omega_{0}}} e^{-\frac{\hbar^{2} k^{2}}{2 m \omega_{0}}}=\frac{\hbar^{2} \beta C^{\star}}{2 m B \sqrt{V}}\left(-i k_{x}+k_{y}\right)\left(\frac{2 \pi \hbar}{m \omega_{0}}\right)^{3 / 2} e^{-\omega_{p} / \omega_{0}} \tag{1.10}
\end{align*}
$$

where \star means complex conjugate.
Using relation between frequencies and magnetic field

$$
\begin{array}{ll}
\omega_{0}=\sqrt{\frac{\gamma \mu}{m}} \quad \text { in isotropic case }=\sqrt{\frac{2 \beta^{2} \mu}{3 m B}} \\
B=\frac{2 \mu \beta^{2}}{3 m} \quad \frac{\beta^{2}}{B^{2}}=\frac{3 \gamma}{2 B}=\frac{3 m \omega_{0}^{2}}{2 \mu B}=\frac{3 m \omega_{0}^{2}}{\hbar \omega_{p}} \tag{1.11}
\end{array}
$$

we can write the final expression for decay rate

$$
\begin{align*}
& \frac{d \Gamma}{d \Omega}=\frac{2 \pi}{\hbar} \frac{V k^{2}}{(2 \pi)^{3}} \frac{m}{\hbar^{2} k} \frac{\hbar^{4} \beta^{2}|C|^{2}}{4 m^{2} B^{2} V}\left|-i k_{x}+k_{y}\right|^{2}\left(\frac{2 \pi \hbar}{m \omega_{0}}\right)^{3} e^{-2 \omega_{p} / \omega_{0}} \\
& =\left(\frac{\pi \hbar}{m \omega_{0}}\right)^{3 / 2} \frac{\hbar \beta^{2}}{2 \pi^{2} m B^{2}} k\left|-i k_{x}+k_{y}\right|^{2} e^{-2 \omega_{p} / \omega_{0}} \\
& =\left(\frac{\pi \hbar}{m \omega_{0}}\right)^{3 / 2} \frac{3 \omega_{0}^{2}}{2 \pi^{2} \omega_{p}} k^{3} \sin ^{2}(\theta) e^{-2 \omega_{p} / \omega_{0}} \\
& =\left(\frac{\pi \hbar}{m \omega_{0}}\right)^{3 / 2}\left(\frac{2 m \omega_{p}}{\hbar}\right)^{3 / 2} \frac{3 \omega_{0}^{2}}{2 \pi^{2} \omega_{p}} \sin ^{2}(\theta) e^{-2 \omega_{p} / \omega_{0}} \\
& =3 \sqrt{\frac{2 \omega_{0} \omega_{p}}{\pi}} \sin ^{2}(\theta) e^{-2 \omega_{p} / \omega_{0}} \tag{1.12}
\end{align*}
$$

One can check explicitly that total angular momentum in the z-direction, $\hat{J}_{z}=$ $\hat{S}_{z}+\hat{L}_{z}$, in which \hat{S} and \hat{L} are spin and orbital angular momentum respectively, commutes with interaction Hamiltonian and that means interaction will preserve conservation of total angular momentum in the z-direction.

Initially, only spin part of angular momentum is non-zero since orbital angular momentum vanishes for isotropic Gaussian wave-function. When transition happens,
the spin of particles changes from $\hat{S}_{z}=+1 / 2$ to $\hat{S}_{z}=-\frac{1}{2}$, therefore the orbital angular momentum's value should be equal to +1 . Interestingly, the function appeared above, $-i k_{x}+k_{y}$ is in fact proportional to $l=1$ spherical harmonics:

$$
\begin{equation*}
-i k_{x}+k_{y}=-i k \sin (\theta) e^{i \phi}=i k \sqrt{\frac{8 \pi}{3}} Y_{1,1}(\theta, \phi) \tag{1.13}
\end{equation*}
$$

Consistent with conservation of total angular momentum.

Gauge transformation of the magnetic field in Yang-Mills theory
Apply the Yang-Mills generalization of gauge transformations,

$$
\begin{align*}
& A_{x}^{\prime}=U A_{x} U^{\dagger}-i U\left(\partial_{x} U^{\dagger}\right) \\
& A_{y}^{\prime}=U A_{y} U^{\dagger}-i U\left(\partial_{y} U^{\dagger}\right) \tag{1.14}
\end{align*}
$$

to the Yang-Mills generalization of the magnetic field

$$
\begin{equation*}
B_{z}=\partial_{x} A_{y}-\partial_{y} A_{x}+i\left[A_{x}, A_{y}\right] \tag{1.15}
\end{equation*}
$$

Treat A_{x}, A_{y}, B_{z} and U as non-commuting matrices, as in the analysis of the magnetic trap. Using only the group property $U U^{\dagger}=\mathbb{1}$ (and its derivatives) show that

$$
\begin{equation*}
B_{z}^{\prime}=U B_{z} U^{\dagger} \tag{1.16}
\end{equation*}
$$

Solution due to Daniel Longenecker

We need to show $U^{\dagger} B_{z}^{\prime} U=B_{z}$.

$$
\begin{align*}
& U^{\dagger} \partial_{x}\left(U A_{y} U^{\dagger}\right) U+U^{\dagger} \partial_{x}\left(-i U \partial_{y} U^{\dagger}\right) U-U^{\dagger} \partial_{y}\left(U A_{x} U^{\dagger}\right) U-U^{\dagger} \partial_{y}\left(-i U \partial_{x} U^{\dagger}\right) U \\
& +i U^{\dagger}\left(\left(U A_{x} U^{\dagger}-i U\left(\partial_{x} U^{\dagger}\right)\right)\left(U A_{y} U^{\dagger}-i U\left(\partial_{y} U^{\dagger}\right)\right)\right. \\
& \left.-\left(U A_{y} U^{\dagger}-i U\left(\partial_{y} U^{\dagger}\right)\right)\left(U A_{x} U^{\dagger}-i U\left(\partial_{x} U^{\dagger}\right)\right)\right) U \\
& =U^{\dagger}\left(\partial_{x} U\right) A_{y}+\partial_{x} A_{y}+A_{y}\left(\partial_{x} U^{\dagger}\right) U-i U^{\dagger} \partial_{x} U\left(\partial_{y} U^{\dagger}\right) U \\
& -i\left(\partial_{x} \partial_{y} U^{\dagger}\right) U-U^{\dagger} \partial_{y} U A_{x} \\
& -\partial_{y} A_{x}-A_{x} \partial_{y} U^{\dagger} U+i U^{\dagger} \partial_{y} U \partial_{x}+i \partial_{y} \partial_{x} U^{\dagger} U \\
& +i\left[A_{x}, A_{y}\right]+A_{x} \partial_{y} U^{\dagger} U+\partial_{x} U^{\dagger} U A_{y}-i \partial_{x} U^{\dagger} U \partial_{y} U^{\dagger} U+ \\
& i \partial_{y} U^{\dagger} U \partial_{x} U^{\dagger} U-A_{y} \partial_{x} U^{\dagger} U-\partial_{y} U^{\dagger} U A_{x} \\
& \partial_{x} A_{y}-\partial_{y} A_{x}+i\left[A_{x}, A_{y}\right]+\partial_{x}\left(U^{\dagger} U\right) A_{y}-\partial_{y}\left(U^{\dagger} U\right) A_{x} \\
& -i \partial_{x}\left(U^{\dagger} U\right) \partial_{y} U^{\dagger} U+i \partial_{y}\left(U^{\dagger} U\right) \partial_{x} U^{\dagger} U \\
& =\partial_{x} A_{y}-\partial_{y} A_{x}+i\left[A_{x}, A_{y}\right]=B_{z} \tag{1.17}
\end{align*}
$$

Where I used $\partial_{x_{i}}\left(U^{\dagger} U\right)=\partial_{x_{i}}\left(U U^{\dagger}\right)=0$.

