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Non-adiabatic loss from a magnetic trap

Using the results of the last problem of assignment 10 and Fermi’s Golden Rule, com-
plete the calculation begun in lecture, of the differential rate
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at which the trapped spin-1/2 particle exits the trap along polar angles (0, ¢) with
respect to the direction of the magnetic field at the center of the trap. Express C only
in terms of fundamental constants, the particle mass m and magnetic moment pu, and
the oscillator and precession frequencies (wp and wy,) instead of the trap parameters
(isotropic case).

Interpret the angular function f(6,¢) in terms of a conservation law.

Due to Chris Wilson, edited by Amir

Our initial state, which is the ground state is given by
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where one can find normalization constant C' by normalization of wavefunction
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While final states are plane wave states:
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Where V is the volume of space.
From the previous homework, we know interaction hamiltonian has the form
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Hipy = (V-A+A-A+2A-V) (1.5)
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To lowest order in 1/B, only the 2A - V term has off-diagonal terms and hence
only this term contributes to transition amplitude. More explicitly, we have
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As it’s derived in the lecture, Fermi’s golden rule determines the transition ampli-
tude from up state to down state as following
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where Er is the Fermi energy, and k denotes momentum of particles
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Since Fermi’s golden rule equates initial energies to final energies, energy gap should
be equal to energy of particles (this assumes w, > wp, so we can ignore zero energy
of initial state). Thus,
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Now we only need to compute |(1,n = O|ﬁmt| 4 E)’
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where x means complex conjugate.
Using relation between frequencies and magnetic field
wo = lad in isotropic case = 282
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we can write the final expression for decay rate
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One can check explicitly that total angular momentum in the z-direction, J. =
S, + ﬁz, in which S and L are spin and orbital angular momentum respectively,
commutes with interaction Hamiltonian and that means interaction will preserve
conservation of total angular momentum in the z-direction.

Initially, only spin part of angular momentum is non-zero since orbital angular mo-
mentum vanishes for isotropic Gaussian wave-function. When transition happens,




the spin of particles changes from S, = +1 /2 to S, = —%, therefore the orbital
angular momentum’s value should be equal to +1. Interestingly, the function ap-
peared above, —ik, + ky is in fact proportional to [ = 1 spherical harmonics:
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Consistent with conservation of total angular momentum.

Gauge transformation of the magnetic field in Yang-Mills theory

Apply the Yang-Mills generalization of gauge transformations,
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to the Yang-Mills generalization of the magnetic field
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Treat A;, Ay, B, and U as non-commuting matrices, as in the analysis of the magnetic
trap. Using only the group property UUT = 1 (and its derivatives) show that
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Solution due to Daniel Longenecker

We need to show UTBLU = B,.
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Where I used 0, (UTU) = 0, (UUT) = 0.




