Assignment 1 solutions

1.

Consider the space frame (S) and the body frame (S^{\prime}) that coincide at time $t=0$, with S^{\prime} rotating at angular velocity $\vec{\omega}_{1}$ about S. The ring itself spins about its own axis at angular velocity $\vec{\omega}_{2}$. From the additivity of angular velocity, the angular velocity of points on the ring relative to S is

$$
\vec{\omega}=\vec{\omega}_{1}+\vec{\omega}_{2}
$$

The ring rolls without slipping on the table, so the point of contact with the table has zero velocity in S :

$$
\vec{v}=\vec{\omega} \times \vec{R}=\overrightarrow{0}
$$

Therefore, $\vec{\omega}$ should be parallel to the position vector \vec{R} of the point of contact, and we have

$$
\omega=\omega_{1} \sin \alpha=\frac{2 \pi}{T} \sin \alpha
$$

Assume that $\vec{\omega}$ lies on $x z$ plane at $t=0$,

$$
\begin{aligned}
\vec{\omega}(t) & =\omega\left[\cos \alpha \cos \left(\omega_{1} t\right) \hat{x}+\cos \alpha \sin \left(\omega_{1} t\right) \hat{y}+\sin \alpha \hat{z}\right] \\
& =\frac{2 \pi}{T} \sin \alpha\left[\cos \alpha \cos \left(\frac{2 \pi}{T} t\right) \hat{x}+\cos \alpha \sin \left(\frac{2 \pi}{T} t\right) \hat{y}+\sin \alpha \hat{z}\right]
\end{aligned}
$$

2. Relative to the ground, the velocity of the point of contact is

$$
\vec{v}+\vec{\omega} \times(-R \hat{n})=\overrightarrow{0},
$$

or

$$
\begin{equation*}
R \vec{\omega} \times(\hat{n})=\vec{v} . \tag{1}
\end{equation*}
$$

In general, the three components of $\vec{\omega}$ and the three component of \vec{v} of a rigid body can be specified independently. For the ball with the rolling-without-slipping constraint, Eq. (1) determines \vec{v} completely from an arbitrary $\vec{\omega}$. Therefore we have only three degrees of freedom, as specified by $\vec{\omega}$.
3. The finite-difference integration of the equation $\dot{U}=A U$ is given by

$$
U(t+\Delta t)=(\mathbb{1}+\Delta t A(t)) U(t),
$$

and $U(T)$ is approximated by

$$
U(T)=\prod_{i=0}^{N-1}(\mathbb{1}+\Delta t A(i \Delta t)) U(0)=\prod_{i=0}^{N-1}(\mathbb{1}+\Delta t A(i \Delta t)),
$$

with $N \equiv T / \Delta t$.
In the gyrating ring problem,

$$
A(t)=\left[\begin{array}{ccc}
0 & -\omega \sin \alpha & (\omega \cos \alpha) \sin \Omega t \\
\omega \sin \alpha & 0 & -(\omega \cos \alpha) \cos \Omega t \\
-(\omega \cos \alpha) \sin \Omega t & (\omega \cos \alpha) \cos \Omega t & 0
\end{array}\right],
$$

with $\omega=\Omega \sin \alpha$.
Using Python as an example, we can compute $U(T)$ by

```
import numpy as np
U = np.eye(3)
alpha = np.pi/4
Omega = 1.
w = Omega*np.sin(alpha)
def A(t):
    wx = w*np.cos(alpha)*np.cos(Omega*t)
    wy = w*np.cos(alpha)*np.sin(Omega*t)
    wz = w*np.sin(alpha)
    return np.array([[0., -wz, wy], \
                                    [wz, 0., -wx], \
                                    [-wy, wx, 0.]])
```

```
T = 2*np.pi/Omega
\(\mathrm{N}=10000\)
time_series = np.linspace ( \(\theta\), \(\mathrm{T}, \mathrm{N}\) )
dt = time_series[1] - time_series[0]
for i in xrange( \(\mathrm{N}-1\) ):
    \(\mathrm{t}=\) time_series[i]
    \(\mathrm{U}=\mathrm{U}+\mathrm{dt} * \mathrm{np} . \operatorname{dot}(\mathrm{A}(\mathrm{t}), \mathrm{U})\)
print U
print np.dot(U, U.T)
```

The program gives us

$$
U(T)=\left[\begin{array}{ccc}
0.367 & -0.682 & -0.633 \tag{2}\\
0.682 & -0.266 & 0.682 \\
-0.633 & -0.682 & 0.367
\end{array}\right]
$$

and

$$
U U^{T}=\left[\begin{array}{ccc}
1.001 & 0.000 & -0.001 \\
0.000 & 1.001 & 0.000 \\
-0.001 & 0.000 & 1.001
\end{array}\right]
$$

indicating that $U(T)$ is nearly orthogonal.

We can check our answer by calculating $U(T)$ directly. Consider three coordinate frames S, S^{\prime} and $S^{\prime \prime}$, which denote the space frame with the \hat{z} axis aligning with the vertical, the body frame that coincide with S at $t=0$ and another space frame related to S by a rotation of $-\alpha$ about the \hat{y} axis respectively.
From the schematic shown in Problem 1, a fixed point \mathbf{r}^{\prime} on the ring undergoes a rotation by $\theta=-2 \pi \cos \alpha$ about the $\hat{z^{\prime \prime}}$ axis over one revolution of gyration, because the ratio of the circumference of the ring of contact to the circumference of the ring is $\cos \alpha$. We can hence relate \mathbf{r}^{\prime} and its representation $\mathbf{r}^{\prime \prime}$ in the $S^{\prime \prime}$ frame by

$$
\mathbf{r}^{\prime \prime}=U_{z^{\prime \prime}}(\theta) U_{y^{\prime}}(\alpha) \mathbf{r}^{\prime},
$$

where

$$
U_{y^{\prime}}(\alpha)=\left[\begin{array}{ccc}
\cos \alpha & 0 & \sin \alpha \\
0 & 1 & 0 \\
-\sin \alpha & 0 & \cos \alpha
\end{array}\right]
$$

and

$$
U_{z^{\prime \prime}}(\theta)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] .
$$

Since $\mathbf{r}^{\prime \prime}$ and its representation \mathbf{r} in the S frame is related by

$$
\mathbf{r}=U_{y}^{T}(\alpha) \mathbf{r}^{\prime \prime}
$$

where

$$
U_{y}(\alpha)=U_{y^{\prime}}(\alpha),
$$

we can represent \mathbf{r} as

$$
\begin{aligned}
\mathbf{r} & =U_{y}^{T}(\alpha) U_{z^{\prime \prime}}(\theta) U_{y^{\prime}}(\alpha) \mathbf{r}^{\prime} \\
& =U(T) \mathbf{r}^{\prime}
\end{aligned}
$$

Therefore,

$$
U(T)=\left[\begin{array}{ccc}
\cos ^{2} \alpha \cos \theta+\sin ^{2} \alpha & -\sin \theta \cos \alpha & \sin \alpha \cos \alpha(\cos \theta-1) \\
\sin \theta \cos \alpha & \cos \theta & \sin \theta \sin \alpha \\
\sin \alpha \cos \alpha(\cos \theta-1) & -\sin \theta \sin \alpha & \sin ^{2} \alpha \cos \theta+\cos ^{2} \alpha
\end{array}\right],
$$

which gives the same answer as Eq. (2) when plugging in the values of α and θ.

