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Assignment 1 solutions

Consider the space frame (S) and the body frame (S’) that coincide at time ¢ = 0, with
S’ rotating at angular velocity ; about S. The ring itself spins about its own axis at
angular velocity @,. From the additivity of angular velocity, the angular velocity of
points on the ring relative to S is

O =d; + 0.

The ring rolls without slipping on the table, so the point of contact with the table has
zero velocity in S:

V=WXR=0.
Therefore, & should be parallel to the position vector R of the point of contact, and we
have

: 2
w=w;sinag = —sina
T
Assume that @ lies on xz plane at ¢ = 0,
@(t) = w [cos @ cos(wit) X + cosasin(w;t) § + sina 3]

2r . 2r o 2T . R
= T sin cosa/cos(Tt) X+ cosa/sm(Tt) y+sina Z|.
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2. Relative to the ground, the velocity of the point of contact is
V+@x (-RA) =0,
or
R& % (i) =v. (1)

In general, the three components of @ and the three component of v of a rigid body can
be specified independently. For the ball with the rolling-without-slipping constraint,
Eq. (1) determines v completely from an arbitrary . Therefore we have only three
degrees of freedom, as specified by &.

3. The finite-difference integration of the equation U = AU is given by
U(t+At) = (1 +AtA@)) U(1),

and U(T) is approximated by

N-1 N-1

U(T) = H(]l + AtA(iAr) U(0) = H(]l + AtA(iAL),

i=0 i=0
with N = T/At.
In the gyrating ring problem,

0 —w sin a (w cos @) sin Qt
A(t) = w sin 0 —(wcosa)cosQr],
—(wcosa)sinQt (wcosa) cos 0

with w = Qsin .

Using Python as an example, we can compute U(T') by

import numpy as np

U = np.eye(3)

alpha = np.pi/4

Omega = 1.

w = Omega*np.sin(alpha)

def A(Y):
wx = w*np.cos(alpha)*np.cos(Omega*t)
wy = w*np.cos(alpha)*np.sin(Omega*t)
wz = w*np.sin(alpha)
return np.array([[0., -wz, wy], \
[wz, 0., -wx], \
[-wy, wx, 0.11)
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T = 2*np.pi/Omega
N = 10000
time_series = np.linspace(®, T, N)
dt = time_series[1] - time_series[0]
for i in xrange(N-1):

t = time_series[i]

U=U+ dt*np.dot(A(t), U)

print U
print np.dot(U, U.T)

The program gives us

U(T)=10.682 -0266 0.682
[—0.633 -0.682 0.367

[ 0.367 -0.682 -0.633
2)

and

vu” =10.000 1.001 0.000
|-0.001 0.000 1.001

[ 1.001  0.000 —0.001]

indicating that U (T) is nearly orthogonal.

We can check our answer by calculating U(T) directly. Consider three coordinate
frames S, S’ and S”, which denote the space frame with the Z axis aligning with the
vertical, the body frame that coincide with § at # = 0 and another space frame related
to S by a rotation of —a about the J axis respectively.

From the schematic shown in Problem 1, a fixed point r’ on the ring undergoes a
rotation by § = —27 cos a about the z” axis over one revolution of gyration, because
the ratio of the circumference of the ring of contact to the circumference of the ring is
cos . We can hence relate r’ and its representation r” in the §” frame by

" =U(0)Uy(a) Y,

where
cose O sin a]

ny(a)z[ 0 1 0

—sina 0 cosa
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and
cosf —sind 0O

U, (0) = |sinf cosf Of.
0 0 1

Since r” and its representation r in the S frame is related by
r= UyT () 1",
where
Uy(a) = Uy (@),
we can represent r as
r = U (@)U (0)Uy(a) ¥
=Ur.
Therefore,

cos’acosf +sina —sinfcosa sinacosa(cosf — 1)

u) = sind cos @ cos 6 sin 6 sin ,

sinacosa(cosf® —1) —sinfsine  sin? @ cos b + cos?

which gives the same answer as Eq. (2) when plugging in the values of @ and 6.



