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Assignment 1 solutions

1.

Consider the space frame (S) and the body frame (S′) that coincide at time t = 0, with
S′ rotating at angular velocity ~ω1 about S. The ring itself spins about its own axis at
angular velocity ~ω2. From the additivity of angular velocity, the angular velocity of
points on the ring relative to S is

~ω = ~ω1 + ~ω2.

The ring rolls without slipping on the table, so the point of contact with the table has
zero velocity in S:

~v = ~ω × ~R = ~0.

Therefore, ~ω should be parallel to the position vector ~R of the point of contact, and we
have

ω = ω1 sin α =
2π
T

sin α

Assume that ~ω lies on xz plane at t = 0,

~ω(t) = ω
[
cos α cos(ω1t) x̂ + cos α sin(ω1t) ŷ + sin α ẑ

]
=

2π
T

sin α
[
cos α cos(

2π
T

t) x̂ + cos α sin(
2π
T

t) ŷ + sin α ẑ
]
.
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2. Relative to the ground, the velocity of the point of contact is

~v + ~ω × (−R n̂) = ~0,

or
R ~ω × (n̂) = ~v. (1)

In general, the three components of ~ω and the three component of ~v of a rigid body can
be specified independently. For the ball with the rolling-without-slipping constraint,
Eq. (1) determines ~v completely from an arbitrary ~ω. Therefore we have only three
degrees of freedom, as specified by ~ω.

3. The finite-difference integration of the equation U̇ = AU is given by

U (t + ∆t) = (1 + ∆t A(t)) U (t),

and U (T ) is approximated by

U (T ) =
N−1∏
i=0

(1 + ∆t A(i∆t)) U (0) =
N−1∏
i=0

(1 + ∆t A(i∆t)),

with N ≡ T/∆t.
In the gyrating ring problem,

A(t) =


0 −ω sin α (ω cos α) sinΩt
ω sin α 0 −(ω cos α) cosΩt

−(ω cos α) sinΩt (ω cos α) cosΩt 0


,

with ω = Ω sin α.
Using Python as an example, we can compute U (T ) by

import numpy as np
U = np.eye(3)
alpha = np.pi/4
Omega = 1.
w = Omega*np.sin(alpha)

def A(t):
wx = w*np.cos(alpha)*np.cos(Omega*t)
wy = w*np.cos(alpha)*np.sin(Omega*t)
wz = w*np.sin(alpha)
return np.array([[0., -wz, wy], \

[wz, 0., -wx], \
[-wy, wx, 0.]])
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T = 2*np.pi/Omega
N = 10000
time_series = np.linspace(0, T, N)
dt = time_series[1] - time_series[0]
for i in xrange(N-1):

t = time_series[i]
U = U + dt*np.dot(A(t), U)

print U
print np.dot(U, U.T)

The program gives us

U (T ) =


0.367 −0.682 −0.633
0.682 −0.266 0.682
−0.633 −0.682 0.367


(2)

and

UUT =



1.001 0.000 −0.001
0.000 1.001 0.000
−0.001 0.000 1.001


,

indicating that U (T ) is nearly orthogonal.

We can check our answer by calculating U (T ) directly. Consider three coordinate
frames S, S′ and S′′, which denote the space frame with the ẑ axis aligning with the
vertical, the body frame that coincide with S at t = 0 and another space frame related
to S by a rotation of −α about the ŷ axis respectively.
From the schematic shown in Problem 1, a fixed point r′ on the ring undergoes a
rotation by θ = −2π cos α about the ẑ′′ axis over one revolution of gyration, because
the ratio of the circumference of the ring of contact to the circumference of the ring is
cos α. We can hence relate r′ and its representation r′′ in the S′′ frame by

r′′ = Uz′′ (θ)Uy′ (α) r′,

where

Uy′ (α) =


cos α 0 sin α
0 1 0

− sin α 0 cos α


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and

Uz′′ (θ) =


cos θ − sin θ 0
sin θ cos θ 0

0 0 1


.

Since r′′ and its representation r in the S frame is related by

r = UT
y (α) r′′,

where
Uy (α) = Uy′ (α),

we can represent r as

r = UT
y (α)Uz′′ (θ)Uy′ (α) r′

= U (T ) r′.

Therefore,

U (T ) =


cos2 α cos θ + sin2 α − sin θ cos α sin α cos α(cos θ − 1)
sin θ cos α cos θ sin θ sin α

sin α cos α(cos θ − 1) − sin θ sin α sin2 α cos θ + cos2 α


,

which gives the same answer as Eq. (2) when plugging in the values of α and θ.


