Diffraction through a slit of an obliquely incident wave

1. In this case, we have that the incident wave $(y<0)$ is $\psi=\Re\left(\tilde{A} e^{i k \sin (\theta) x+i k \cos (\theta) y}\right)$, for $|x|<a$, and the outgoing wave $(y>0)$ is given, as before, by $\psi=\Re\left(\int \hat{f}\left(k_{x}\right) e^{i k_{x} x+i k_{y} y} d k_{x}\right)$. At $y=0$, requiring them to match gives $\tilde{A} e^{i k \sin (\theta) x}=\int \hat{f}\left(k_{x}\right) e^{i k_{x} x} d k_{x}$. We can determine \hat{f} by

$$
\hat{f}\left(k_{x}\right)=\int_{-a}^{a} \frac{\tilde{A}}{2 \pi} e^{i k \sin (\theta) x-i k_{x} x} d x=\int_{-a}^{a} \frac{\tilde{A}}{2 \pi} e^{i\left(k \sin (\theta)-k_{x}\right) x} d x
$$

Let $q=k \sin (\theta)-k_{x}$, then this can be rewritten as $\int_{-a}^{a} \frac{\tilde{A}}{2 \pi} e^{i q x} d x$, and we can recycle the result given in lecture finding

$$
\hat{f}\left(k_{x}\right)=\frac{\tilde{A}}{\pi} a \frac{\sin (q a)}{q a}=\frac{\tilde{A} a}{\pi} \frac{\sin \left(\left(k \sin (\theta)-k_{x}\right) a\right)}{\left(k \sin (\theta)-k_{x}\right) a}
$$

Which is maximized when $k \sin (\theta)=k_{x}$. Since $k_{x}^{2}+k_{y}^{2}=k$, we can write $k_{x}=k \sin \left(\theta^{\prime}\right)$, and we finally wind that the maximum-magnitude amplitude occurs at

$$
\theta^{\prime}=\theta
$$

Diffraction of waves around an obstacle

1. The function $f(x)$ is given by

$$
f(x)= \begin{cases}0 & |x|<a \\ \tilde{A} & |x|>a\end{cases}
$$

2. Without the block, the function $f_{0}(x)=\tilde{A}$. The difference is then

$$
\Delta f(x)=f(x)-f_{0}(x) \begin{cases}-\tilde{A} & |x|<a \\ 0 & |x|>a\end{cases}
$$

3. The difference function is, up to a minus sign, the same as the function defined by the slit, so the Fourier transform is simply

$$
\Delta \hat{f}\left(k_{x}\right)=-\frac{\tilde{A}}{\pi} a \frac{\sin \left(k_{x} a\right)}{k_{x} a}
$$

4. The unobstructed wave function $\widetilde{\Psi}_{0}=\tilde{A} e^{i k y}$, and the difference function is $\int-\frac{\tilde{A}}{\pi} a \frac{\sin \left(k_{x} a\right)}{k_{x} a} e^{i k_{x} x+k_{y} y} d k_{x}$, so the diffracted wave function

$$
\widetilde{\Psi}=\tilde{A} e^{i k y}-\int \frac{\tilde{A}}{\pi} a \frac{\sin \left(k_{x} a\right)}{k_{x} a} e^{i k_{x} x+k_{y} y} d k_{x}
$$

Power in a stretched string

1. The power is given by $P_{\rightarrow}=-T \frac{\partial y}{\partial x} \frac{\partial y}{\partial t}$. For $y=f(x-v t)$, we have $\frac{\partial y}{\partial x}=f^{\prime}(x-v t)$ and $\frac{\partial y}{\partial t}=-v f^{\prime}(x-v t)$, so $P_{\rightarrow}=$ $v T\left[f^{\prime}(x-v t)\right]^{2}$. At $t=0$ we then have $P_{\rightarrow}=v T\left[f^{\prime}(x)\right]^{2}$. For a triangle pulse,
$f(x)=h+\left\{\begin{array}{lr}\frac{h}{L} x & -L<x<0 \\ -\frac{h}{L} x & 0 \leq x>L\end{array}\right.$, which

implies $P_{\rightarrow}=v T \frac{h^{2}}{L^{2}}=\sqrt{\frac{T^{3}}{\mu}} \frac{h^{2}}{L^{2}}$ for $|x|<L$ at $t=0$, and 0 otherwise.
2. The energy passing through the point is the integral of the power over time. The total time it takes for the pulse to travel through the point is $\frac{2 L}{v}=2 L \sqrt{\frac{\mu}{T}}$. The energy is then

$$
E=\int_{0}^{2 L / v} v T \frac{h^{2}}{L^{2}} d t=2 T \frac{h^{2}}{L}
$$

Generalizing the intensity formula of a sound wave
We guess that the generalization is $\boldsymbol{I}=-B(\nabla \cdot \boldsymbol{s}) \frac{\partial}{\partial t} \boldsymbol{s}$. This satisfies the requirements: the intensity is a vector, since $-B(\nabla \cdot \boldsymbol{s})$ is a scalar and $\frac{\partial}{\partial t} \boldsymbol{s}$ is a vector, it is in terms of a vector field \boldsymbol{s}, the equation is valid for any coordinate system, and since in cartesian units $\nabla \cdot \boldsymbol{s}=\frac{\partial}{\partial x}(\boldsymbol{s} \cdot \hat{\boldsymbol{x}})+$ $\frac{\partial}{\partial y}(\boldsymbol{s} \cdot \widehat{\boldsymbol{y}})+\frac{\partial}{\partial z}(\boldsymbol{s} \cdot \hat{\mathbf{z}})$, for the case $\boldsymbol{s}=s \hat{\boldsymbol{x}}$, the becomes $\frac{\partial s}{\partial x}$, and we get $I \hat{\boldsymbol{x}}=-B \frac{\partial s}{\partial x} \frac{\partial s}{\partial t} \hat{\boldsymbol{x}}$, or $I=$ $-B \frac{\partial s}{\partial x} \frac{\partial s}{\partial t}$.

