
Equilibrium properties of the point-particle gas in three dimensions 

1. The bulk modulus is related to the energy by 𝐵 = 𝑉
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2. The speed is given by  
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3. Using the result from part 1, we have 𝑣𝑠 = √
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Displacement, density, and pressure in sound 

We begin by noting that ∇ ⋅ 𝒔 being positive means there is a net displacement outwards from the 
volume, meaning particles are moving out of the volume, and therefore the density in the volume 
and the pressure is decreasing. This means the signs must be negative.  

Furthermore, ∇ ⋅ 𝒔 is unitless, because 𝒔 is a displacement, so it has units of distance, and ∇ is a 

spatial derivative and therefore has units of inverse distance. The quantity 
𝛿𝑛

𝑛
 is also trivially 

unitless. For the quantity 
𝛿𝑝

𝐵
, we recall 𝐵 =  𝑉

𝜕𝑝

𝜕𝑉
, which has units of 𝑝, so 

𝛿𝑝

𝐵
 is also unitless.  

Consider a set of particles in a small volume 𝑉 whose lower left corner is initially at (𝑥, 𝑦, 𝑧), and 
initially has dimensions Δ𝑥, Δ𝑦, Δ𝑧. The leftmost face undergoes a displacement 𝑠𝑥 (𝑥, 𝑦, 𝑧), and the 
rightmost face undergoes a displacement 𝑠𝑥(𝑥 + Δ𝑥, 𝑦, 𝑧). The new 𝑥 coordinates of the left and 
right faces are then 𝑥 + 𝑠𝑥(𝑥, 𝑦, 𝑧) and 𝑥 + Δ𝑥 + 𝑠𝑥 (𝑥 + Δ𝑥, 𝑦, 𝑥), so the new dimension along 𝑥 is 
Δ𝑥 + 𝑠𝑥 (𝑥 + Δ𝑥, 𝑦, 𝑥) − 𝑠𝑥 (𝑥, 𝑦, 𝑧), and the change in volume due to this displacement is 

Δ𝑦Δ𝑧(𝑠𝑥(𝑥 + Δ𝑥, 𝑦, 𝑥) − 𝑠𝑥 (𝑥, 𝑦, 𝑧)) = Δ𝑦Δ𝑧Δ𝑥
(𝑠𝑥(𝑥+Δ𝑥,𝑦,𝑥)−𝑠𝑥(𝑥,𝑦,𝑧))

Δ𝑥
≈ 𝑉

𝜕𝑠𝑥

𝜕𝑥
. We can repeat this 

argument for the other dimensions, and find that the total change in volume is 𝛿𝑣 =
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+
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) = 𝑉 ∇ ⋅ 𝒔, or ∇ ⋅ 𝒔 =
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𝑉
. Multiplying and dividing by 𝛿𝑝, we find  ∇ ⋅ 𝒔 =
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, and using 𝐵 = −𝑉
𝜕𝑝

𝜕𝑉
 we finally obtain  

∇ ⋅ 𝒔 = −
𝛿𝑝

𝐵
. 

Again consider a set of particles in a small volume 𝑉 whose lower left corner is at (𝑥, 𝑦, 𝑧), and has 
dimensions Δ𝑥, Δ𝑦, Δ𝑧. As the particles undergo a displacement, the number of particles that exit 
the volume crossing the left face is −𝑛 Δ𝑦Δ𝑧𝑆𝑥(𝑥, 𝑦, 𝑧) and the number of particles that exit 



crossing the right face is 𝑛 Δ𝑦Δ𝑧𝑆𝑥(𝑥 + Δ𝑥, 𝑦, 𝑧). The number of particles that exit the volume by 
crossing the right and left faces is then 𝑛Δ𝑦Δ𝑧(𝑠𝑥(𝑥 + Δ𝑥, 𝑦, 𝑥) − 𝑠𝑥 (𝑥, 𝑦, 𝑧)) =

𝑛Δ𝑦Δ𝑧Δ𝑥
(𝑠𝑥(𝑥+Δ𝑥,𝑦,𝑥)−𝑠𝑥(𝑥,𝑦,𝑧))

Δ𝑥
≈ 𝑛𝑉

𝜕𝑠𝑥

𝜕𝑥
. We can repeat this argument for the other dimensions and 

find that the total number of particles that exit the volume is 𝑛𝑉 (
𝜕𝑠𝑥

𝜕𝑥
+

𝜕𝑠𝑦

𝜕𝑦
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𝜕𝑠𝑧
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) = 𝑛𝑉 ∇ ⋅ 𝒔. The 

change in number of particles in the box is then Δ𝑁 =  − 𝑛𝑉 ∇ ⋅ 𝒔, and negative sign is because the 
righthand expression is the number of particles that have exited the volume. This can be rewritten 

as −
(

Δ𝑁

𝑉
)

𝑛
= ∇ ⋅ 𝒔, but 

Δ𝑁

𝑉
 is the change in density, giving finally 

−
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𝑛
= ∇ ⋅ 𝒔. 

Note that we could have obtained this from ∇ ⋅ 𝒔 =
𝛿𝑉

𝑉
 as follows: 𝛿𝑛 =
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𝜕𝑉
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𝛿𝑉 = −𝑛
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𝑉
=  −𝑛 ∇ ⋅ 𝑺, and dividing by −𝑛 we obtain the desired expression. In this 

derivation, however, the physics represented by the equation is not as clear. 

The wave equation in three dimensions 

1. ∇2𝑝 =
𝜕2 𝑝

𝜕𝑥2
+

𝜕2 𝑝

𝜕𝑦2
+

𝜕2 𝑝

𝜕𝑧2
. If 𝑝 varies spatially only in 𝑥, 

𝜕𝑝

𝜕𝑧
=
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𝜕𝑦
= 0, so  

𝜕2 𝑝

𝜕𝑧2
=

𝜕2 𝑝

𝜕𝑦2
= 0. With this, 

we have 
𝜕2 𝑝
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𝜕𝑦2
+

𝜕2 𝑝

𝜕𝑧2
=

𝜕2 𝑝

𝜕𝑥2
, and 

𝜕2 𝑝

𝜕𝑡2
= 𝑣 2∇2𝑝 reduces to 

𝜕2 𝑝

𝜕𝑡2
= 𝑣 2 𝜕2 𝑝

𝜕𝑥2
. 

2. Plugging 𝑝0 cos(𝑘𝑥 − 𝜔𝑡) into 
𝜕2 𝑝

𝜕𝑡2
= 𝑣 2 𝜕2 𝑝

𝜕𝑥2
, the left-hand side becomes −𝜔2𝑝0 cos(𝑘𝑥 − 𝜔𝑡) 

and the right-hand side becomes −𝑣 2𝑘2𝑝0 cos(𝑘𝑥 − 𝜔𝑡), which means 𝜔2 = 𝑣 2𝑘2 , or  
𝜔 = 𝑣𝑘. 

Next, we note that 𝑝0 cos(𝒌 ⋅ 𝒓 − 𝜔𝑡) = 𝑝0 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡) . Recalling ∇2𝑝 =
𝜕2 𝑝

𝜕𝑥2
+

𝜕2 𝑝

𝜕𝑦2
+

𝜕2 𝑝

𝜕𝑧2
, we see  

∇2 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡)

= −𝑘𝑥
2𝑝0 cos(𝑘𝑥 𝑥 + 𝑘𝑦𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡) − 𝑘𝑦

2𝑝0 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡)

− 𝑘𝑧
2𝑝0 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡)

= −(𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)𝑝0 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡)

= −𝒌 ⋅ 𝒌 𝑝0 cos(𝑘𝑥𝑥 + 𝑘𝑦 𝑦 + 𝑘𝑧𝑧 − 𝜔𝑡) 
The second derivative with respect to time is −𝜔2𝑝0 cos(𝒌 ⋅ 𝒓 − 𝜔𝑡), which means 

𝑣 2𝒌 ⋅ 𝒌 = 𝑣 2|𝒌|2 = 𝜔2 . 
3. The fact that the medium is isotropic implies rotational symmetry, meaning that the 

equation should remain unchanged by rewriting it in terms of coordinates rotated relative to 
the initial ones. In particular, changing 𝑥 → 𝑦, 𝑦 → 𝑧, 𝑧 → 𝑥 should leave the equation 

unchanged, which is true for 
𝜕2 𝑝

𝜕𝑡2
= 𝑣 2∇2𝑝. 

4. In this case ∇2𝑝 =  
𝜕2 𝑝

𝜕𝑥2
+

𝜕2 𝑝

𝜕𝑦2
=  −𝑘𝑥

2𝑝0𝑒−𝑘𝑦 𝑦 cos(𝑘𝑥𝑥 − 𝜔𝑡) + 𝑘𝑦
2𝑝0𝑒−𝑘𝑦 𝑦 cos(𝑘𝑥𝑥 − 𝜔𝑡) =

−(𝑘𝑥
2 − 𝑘𝑦

2)𝑝0𝑒−𝑘𝑦 𝑦 cos(𝑘𝑥𝑥 − 𝜔𝑡), and 
𝜕2 𝑝

𝜕𝑡2
= −𝜔2𝑝0𝑒−𝑘𝑦 𝑦 cos(𝑘𝑥𝑥 − 𝜔𝑡). This means 

𝑣 2(𝑘𝑥
2 − 𝑘𝑦

2) = 𝜔2  



Sound modes in an organ pipe 

1. At the 𝑥 = 0 the pipe is closed by a solid barrier, so there is no displacement there. The 
boundary condition is therefore 

𝑠(0, 𝑡) = 0.  

2. Recall that Δ𝑝 ∝
𝜕𝑠

𝜕𝑥
, so at 𝑥 = 𝐿, we have 

𝜕𝑠

𝜕𝑥
(𝐿, 𝑡) = 0. 

3. The normal modes will be of the form 𝐴 cos(𝜔𝑡) sin(𝑘𝑥), because sin(𝑘0) = 0, as required 

by the boundary conditions. The second boundary condition p
𝜕𝑠

𝜕𝑥
(𝐿, 𝑡) ∝ cos(𝑘𝐿) = 0 

implies 𝑘𝐿 =
2𝜋𝐿

𝜆
= (𝑛 +

1

2
) 𝜋, or 𝜆 =

2𝐿

𝑛+
1

2

. In air, sound has a linear dispersion relation, so 

𝜔 = 𝑣𝑠𝑘 which gives 𝑓 =
𝑣𝑠

𝜆
= 𝑣𝑠

(𝑛+
1

2
)

2𝐿
. Solving for 𝐿 we obtain 𝐿 =

𝑣𝑠

𝑓

𝑛+
1

2

2
. For the lowest 

mode, 𝑛 = 0, so 

𝐿 =
𝑣𝑠

4𝑓
=

340

4 ⋅ 440
m ≈ 0.19 m. 

4. Substituting 𝐿 =
𝑣𝑠

4𝑓0
 into 𝑓 = 𝑣𝑠

(𝑛 +
1

2
)

2𝐿
, where we’ve used 𝑓0  to refer to the lowest mode, we 

get 𝑓 = 2𝑓0 (𝑛 +
1

2
). For the next lowest, 𝑛 = 1, we have  

𝑓1 =  2𝑓0 (1 +
1

2
) = 3𝑓0 = 1320 Hz. 


