Homework 8

Due date: Wednesday, March 27

Equilibrium properties of the point-particle gas in three dimensions

1. Starting with the result you obtained on the previous homework (total energy in a 3D gas of point particles)

$$
E(V)=E\left(V_{0}\right)\left(\frac{V_{0}}{V}\right)^{2 / 3}
$$

show that

$$
B(V) V=\alpha E(V)
$$

where $B(V)$ is the bulk modulus of the gas and α is a numerical constant whose value you need to determine.
2. Express the sound speed in the gas, v_{s}, in terms of $V, B(V), m$, and N, the number of particles in the gas. You do not need the result of part (1) for this.
3. Using the expression

$$
E(V)=N \frac{1}{2} m\left\langle v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right\rangle
$$

where the angle brackets denote "average over all particles", show that the sound speed v_{s} is proportional to the root-mean-square particle speed defined as

$$
v_{\mathrm{rms}}=\sqrt{\left\langle v_{x}^{2}+v_{y}^{2}+v_{z}^{2}\right\rangle} .
$$

In other words, show that

$$
v_{s}=\beta v_{\mathrm{rms}} .
$$

and determine the numerical constant β. For this part you need to use the results of parts (1) and (2).

Displacement, density, and pressure in sound

A medium is comprised of particles with number density (number per unit volume) n, and has bulk modulus B. Sound in the medium is described by a time-dependent vector field $\mathbf{s}(\mathbf{r}, t)$ that specifies the displacement of large groups of particles (large compared to the mean-free-path, small compared to the sound wavelength). In the presence of sound, there are small perturbations of the density, $\delta n(\mathbf{r}, t)$, and the pressure, $\delta p(\mathbf{r}, t)$. By using the hints provided below, show that these are related to the displacement as follows ${ }^{1}$:

$$
\pm \frac{\delta n}{n}=\nabla \cdot \mathbf{s}= \pm \frac{\delta p}{B}
$$

- Using intuition and basic calculus, first determine the correct signs!
- Confirm that the units are correct!
- For one relation you will want to consider a fixed set of particles moving in such a way that the volume they occupy changes by δv.
- For another relation you will want to consider a fixed volume in space and the change in the number of enclosed particles due to their flow through the surface of the volume.
- As in the derivation of the local relationship for charge conservation, you will need the divergence theorem of vector calculus:

$$
\int_{\mathcal{S}} \mathbf{v} \cdot d \mathbf{a}=\int_{\mathcal{V}} \nabla \cdot \mathbf{v} d^{3} \mathbf{r} .
$$

The wave equation in three dimensions

To a very good approximation, the medium of sound (air) is 3D and isotropic. In lecture our particle displacements $s(x, t)$ only varied with x and were always along x as well. The "wave equation" we derived had the same preference for x :

$$
\frac{\partial^{2} s}{\partial t^{2}}=v^{2} \frac{\partial^{2} s}{\partial x^{2}}
$$

Applying $\partial / \partial x$ to this equation, recognizing $\partial s / \partial x$ as $\nabla \cdot \mathbf{s}$ when \mathbf{s} only has an x component, and using the previous problem, the wave equation can be expressed as an equation for the pressure, a scalar:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t^{2}}=v^{2} \frac{\partial^{2} p}{\partial x^{2}} \tag{1}
\end{equation*}
$$

[^0]In this problem you will gain some familiarity with the generalization of this equation that describes sound in a 3D isotropic medium:

$$
\begin{equation*}
\frac{\partial^{2} p}{\partial t^{2}}=v^{2} \nabla^{2} p \tag{2}
\end{equation*}
$$

1. Show that (2) reduces to (1) when p varies (in space) only along x.
2. Suppose

$$
p(x, t)=p_{0} \cos (k x-\omega t)
$$

is a solution of (1). What is the relationship between k and ω ? Next consider the generalization

$$
p(\mathbf{r}, t)=p_{0} \cos (\mathbf{k} \cdot \mathbf{r}-\omega t),
$$

a wave running in the direction of the vector \mathbf{k}. Show that this pressure satisfies (2). What is the relationship between k and ω ? This form of the pressure may help you understand the operator relationship $\nabla \cdot \nabla=\nabla^{2}$.
3. What symmetry property supports (2) as the correct generalization? A simple statement (no math) suffices here!
4. Suppose the pressure has the partially evanescent form

$$
p(\mathbf{r}, t)=p_{0} e^{-k_{y} y} \cos \left(k_{x} x-\omega t\right),
$$

where k_{x} and k_{y} are real numbers. What is the relationship between k_{x}, k_{y} and ω ?

Sound modes in an organ pipe

Take as a simple model of an organ pipe a cylinder with one end closed and the other end open:

1. When describing the sound in the cylinder in terms of the displacement $s(x, t)$ of cylindrical volumes of gas relative to equilibrium, what boundary condition should be imposed on $s(x, t)$ at the closed end, $x=0$?
2. The appropriate boundary condition at the open end, $x=L$, is that the pressure amplitude Δp vanishes ${ }^{2}$. What boundary condition does that impose on $s(x, t)$?
3. Suppose you are building an organ pipe whose lowest tone (normal mode) has frequency f (cycles per second). What should be the length L for $f=440 \mathrm{~Hz}$, assuming the standard sound speed $340 \mathrm{~m} / \mathrm{s}$?
4. A pipe tuned to 440 Hz as its lowest tone will also resonate at higher frequencies. What is the next lowest?
[^1]
[^0]: ${ }^{1}$ In this problem and the next we are using the convention where vectors are rendered in bold-face font. Please keep vectors and scalars distinct in your solutions as well.

[^1]: ${ }^{2}$ This is not exactly true but a very good approximation. There is in fact a sound wave that propagates out of the open end - the very same sound we hear - but whose pressure amplitude even a short distance from the open end is very much smaller than the pressure inside the pipe.

