Assignment 8

Due date: Halloween ${ }^{1}$

Charged particle motion from the action principle

In this problem we treat the electromagnetic field as given (produced by an external agent) and study its effect on the motion of a relativistic particle of mass m and charge q. The converse, or electromagnetic field produced by a given charged-particle world line, gets equal treatment in the second problem.

So as to not confuse a general event x in space-time with the particle world-line, we use the notation $\xi(t)$ for the latter, where t is an arbitrary parameter (not necessarily time). Consider the following definition of the 4 -current density in space-time associated with the particle:

$$
J^{\alpha}(x)=q \int(\mathcal{L} d t) u^{\alpha}(t) \delta^{4}(x-\xi(t))
$$

where

$$
d \tau=\mathcal{L} d t=\sqrt{\dot{\xi}^{\alpha} \dot{\xi}_{\alpha}} d t
$$

is the proper-time element and $u^{\alpha}=\dot{\xi}^{\alpha} / \mathcal{L}$ is the 4 -velocity.

1. Confirm that this geometrical definition matches the usual definition of the 4current density by choosing time $t=x^{0}$ as the arbitrary parameter and explicitly evaluating the integral. Specifically, show that

$$
\begin{aligned}
J^{0}(t, \mathbf{x}) & =\rho(t, \mathbf{x})=q \delta^{3}(\mathbf{x}-\boldsymbol{\xi}(t)) \\
\mathbf{J}(t, \mathbf{x}) & =q \mathbf{v}(t) \delta^{3}(\mathbf{x}-\boldsymbol{\xi}(t))
\end{aligned}
$$

2. Return to the integral expression for $J^{\alpha}(x)$ without the specialization $t=$ time. Show that

$$
S_{\mathrm{int}}[\xi]=\int d^{4} x J^{\alpha}(x) A_{\alpha}(x)=q \int d t \dot{\xi}^{\alpha}(t) A_{\alpha}(\xi(t))
$$

Here $S_{\text {int }}$ is the term in the action that couples the particle to the electromagnetic field.

[^0]3. Obtain the equations of motion for the particle from the combined action,
$$
S[\xi]=S_{\text {free }}[\xi]+S_{\mathrm{int}}[\xi],
$$
where
$$
S_{\text {free }}[\xi]=m \int \mathcal{L} d t
$$
is the action of the free particle (derived in lecture) with a particular choice of scale factor. Specifically, show that the Euler-Lagrange equations imply
\[

$$
\begin{equation*}
m \dot{u}^{\alpha}(t)=q F^{\alpha \beta}(\xi(t)) \dot{\xi}_{\beta}(t) \tag{1}
\end{equation*}
$$

\]

4. Again using time as the parameter, express the four components of the equations of motion (1) in terms of \mathbf{E} and \mathbf{B}, and the components

$$
\begin{aligned}
m u^{\alpha} & =(\mathcal{E}, \mathbf{p}) \\
\dot{\xi}^{\alpha} & =(1, \mathbf{v})
\end{aligned}
$$

Field produced by a relativistic charged particle

Consider a particle of charge q described by a general world-line $\xi(\tau)$, parameterized by the proper time τ elapsed along the world-line. In lecture we derive the formula ${ }^{2}$

$$
\partial^{\alpha} A^{\beta}(x)=\left.\left(\frac{q}{y \cdot u}\right) \frac{d}{d \tau}\left(\frac{y^{\alpha} u^{\beta}}{y \cdot u}\right)\right|_{\tau=\tau_{0}}
$$

for the gradient of the 4 -vector potential produced by the particle. As in lecture, $u(\tau)$ is the particle 4 -velocity and $y(\tau)=x-\xi(\tau)$ is the 4-vector separation between x and events along the world line. At the parameter value $\tau=\tau_{0}$, the separation y is null and the source $\xi\left(\tau_{0}\right)$ lies on the past light-cone of x.

1. From the above formula for $\partial^{\alpha} A^{\beta}$ obtain $F^{\alpha \beta}$ and show that

$$
\begin{aligned}
& \mathbf{E}=\frac{q}{y \cdot u}\left(\frac{\mathbf{R} a^{0}-R \mathbf{a}}{y \cdot u}+\frac{\mathbf{R} u^{0}-R \mathbf{u}}{(y \cdot u)^{2}}(1-y \cdot a)\right) \\
& \mathbf{B}=\hat{\mathbf{n}} \times \mathbf{E}
\end{aligned}
$$

Here $\left(a^{0}, \mathbf{a}\right)=d u^{\alpha} / d \tau$ are the components of the 4-acceleration and the null separation 4 -vector is expressed in terms of a distance R and unit 3 -vector as $y^{\alpha}=(R, \mathbf{R})=(R, R \hat{\mathbf{n}})$.

[^1]2. Rewrite the expression for \mathbf{E} in terms of the ordinary 3-velocity $\boldsymbol{\beta}$, the 3acceleration $\dot{\boldsymbol{\beta}}=d \boldsymbol{\beta} / d t, \gamma=1 / \sqrt{1-\beta^{2}}$ and arrive at:
$$
\mathbf{E}=\frac{q}{(\gamma R)^{2}} \frac{\hat{\mathbf{n}}-\boldsymbol{\beta}}{(1-\hat{\mathbf{n}} \cdot \boldsymbol{\beta})^{3}}+\frac{q}{R} \frac{\hat{\mathbf{n}} \times(\hat{\mathbf{n}}-\boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}}}{(1-\hat{\mathbf{n}} \cdot \boldsymbol{\beta})^{3}} .
$$

Exercise from The Lost Jackson Codex, Vol. XIV
For any field point x not on the world-line $\xi(t)$ of a (non-tachyonic) particle, show that there is a unique t_{0} and $y\left(t_{0}\right)=x-\xi\left(t_{0}\right)$ such that $y\left(t_{0}\right) \cdot y\left(t_{0}\right)=0$ and $y^{0}\left(t_{0}\right)>0$.

[^0]: ${ }^{1}$ As a special "treat", we set $c=1$ in this assignment.

[^1]: ${ }^{2} 4$-vector dot products, such as $y \cdot u$, are shorthand for $y^{\gamma} u_{\gamma}$.

