
Intrinsic localized modes (ILMs) in the coupled pendulum system 

1. The frequency range was found from the equation which was derived assuming small 
angles, which is no longer valid in this case. 

2. Treating all other oscillators as small amplitude pendulums, the frequency range is still 
valid for these. Since the driving pendulum has a smaller frequency than any of these 
frequencies, the driving force will not be in resonance with any of the modes, and therefore 
their amplitudes will remain small. 

Volume dependence of the kinetic energy of a 3D gas of point particles 

1. As stated in the homework, we follow the same steps as for the 2D case. The change in 
energy for a single particle with velocity 𝑣𝑥 is −2𝑚𝑣𝑥𝑉𝑥, where 𝑉𝑥  is the speed of the wall. 
The fraction of particles with velocity between 𝑣𝑥 and 𝑣𝑥 + 𝑑𝑣𝑥 is 𝑓(𝑣𝑥)𝑑𝑣𝑥 . The fraction of 
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Uncertain tuning 

1. We know that Δ𝑘Δ𝑥 = 𝑐𝑜𝑛𝑠𝑡., where the specific constant on the right will depend on the 
particular shape of the pulse in time. For example, for a gaussian or a uniform pulse, we 
found 𝑐𝑜𝑛𝑠𝑡. = 2, and we can use that in this estimate (it seems reasonable to assume the 
oboe will play at a constant intensity over the given period of time). The specific number 
isn’t very important anyway, since we are looking for an order of magnitude estimate. 
Because sound has a linear dispersion in air, we know 𝜔 = 𝑐𝑠𝑘, where 𝑐𝑠 is the speed of 
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Mean free path of spherical particles 

1. The particles themselves are spheres with radius 𝑟, but the two particles will collide if their 
cross-sectional areas overlap, which will happen if the two particles’ centers are within a 
distance 2𝑟 of each other. Therefore, if the moving particle is considered a point, the 
“targets” can be considered disks with area 𝜋(2𝑟)2 = 4𝜋𝑟2.  

The probability of a particle being in a given length 𝑙 is equal to the ratio 𝑙

𝐿
, where 𝐿 is the 

total length of the volume containing the gas. The probability of a particle being in a collision 
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2. The number density of the particles can be obtained from the ideal gas law, which states 

𝑃𝑉 = 𝑁𝑘𝐵𝑇, which rearranged gives 𝑁
𝑉

= 𝑛 =
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≈ 1025/m3. The radius 𝑟 is likely on the 

order of the atomic radius, which is on the scale of 10−10m.  With 𝑟 ≈ 10−10m, we have 
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4𝜋 10−20 × 1025
 m ≈ 0.08 × 10−5 m ≈ 1 μm. 


