
Velocity of a relativistic particle 

The apparent paradox comes from treating a particle as a single wave mode, which would imply no 
uncertainty in the momentum of the particle, and therefore infinite uncertainty in the position of the 
particle, but localization is a defining characteristic of a particle. A particle is therefore a wave 
packet composed of many different modes, so its speed is better thought of as the group velocity of 

the wave packet. In fact, we can compute what this is as 𝑣 =
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exactly the same as obtained from relativity. 

Coupled pendulum dispersion relation 

1. Ignoring the second term on the right, we have a differential equation describing the motion 
of a single pendulum (in the small amplitude limit), whose solutions are given by sines and 
cosines with angular frequency 𝜔0, so 𝜔0 is the natural frequency of oscillation of a single 
pendulum. Ignoring the first term on the right, we have a discrete version of the wave 
equation with waves propagating at “speed” √𝜏 (in units of number of oscillators per time). 𝜏 
is therefore the “speed” of propagation of a pulse through the system of coupled oscillators. 

2. Substituting in equation 2 into equation 1 on the homework sheet we find 
−𝐴𝜔2 cos(𝜔𝑡) cos(𝑘𝑛) = −𝜔0

2𝐴 cos(𝜔𝑡) cos(𝑘𝑛) + 𝜏𝐴 cos(𝜔𝑡) (cos(𝑘𝑛 − 𝑘) − 2 cos(𝑘𝑛) +

cos(𝑘𝑛 + 𝑘)). Dividing by 𝐴 cos(𝜔𝑡) and using cos(𝑘𝑛 − 𝑘) + cos(𝑘𝑛 + 𝑘) =

2 cos(𝑘𝑛) cos(𝑘) we obtain −𝜔2 cos(𝑘𝑛) = 𝜔0
2 cos(𝑘𝑛) + 2𝜏 cos(𝑘𝑛) (cos(𝑘) − 1). Dividing 

by − cos(𝑘𝑛) we have that  𝜔0
2𝐴 cos(𝜔𝑡) cos(𝑘𝑛) is a solution to equation 1 is 𝜔2 = 𝜔0

2 −

2𝜏(cos(𝑘) − 1), or 

𝜔 = √𝜔0
2 + 2𝜏(1 − cos(𝑘)) 

3. Using the trigonometric identities for sums of angles we have that cos(𝛼 + 𝑚2𝜋) =

cos(𝛼) cos(𝑚2𝜋) − sin(𝛼) sin(𝑚2𝜋). But cos(𝑚2𝜋) = 1, sin(𝑚2𝜋) = 0 for integer 𝑚. With 
this, we have that cos(𝑘2𝑛) = cos(𝑘1𝑛 + 2𝜋𝑛𝐾) = cos(𝑘1𝑛). Therefore, 

 𝐴 cos(𝜔𝑡) cos(𝑘2𝑛) = 𝐴 cos(𝜔𝑡) cos(𝑘1𝑛), 
So 𝑘2 = 𝑘1 + 2𝜋𝐾 is the same mode as 𝑘1. 

4. We know 0 ≤ (1 − cos(𝑘)) ≤ 2, 
and 1 − cos(𝑘) = 0 for 𝑘 = 0, 
and 1 − cos(𝑘) = 2 for 𝑘 = ±𝜋. 
From this, we have 𝜔0

2 ≤ 𝜔0
2 +

2𝜏(1 − cos(𝑘)) ≤ 𝜔0
2 + 4𝜏, and 

since √𝑥 is strictly increasing 
(assuming 𝑥 is real), we have 

𝜔0 ≤ 𝜔(𝑘) ≤ √𝜔0
2 + 4𝜏, 

and  

𝜔(0) = 𝜔0, 𝜔(±𝜋) = √𝜔0
2 + 4𝜏. 
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Organ pipe, both ends open 

1. For the normal mode solutions, we assume 𝑝(𝑥, 𝑡) = cos(𝜔𝑡) 𝑓𝜔(𝑥). Substituting this into 
the wave equation, we find −𝜔2 cos(𝜔𝑡) 𝑓𝜔(𝑥) = 𝑣2 cos(𝜔𝑡) 𝑓𝜔

′′(𝑥), or, simplified, 𝑓𝜔
′′(𝑥) =

−
𝜔2

𝑣2 𝑓𝜔(𝑥), which implies 𝑓𝜔(𝑥) = 𝐴 cos(𝑘𝑥) + 𝐵 sin(𝑘𝑥), with 𝑘 =
𝜔

𝑣
. The general solution is 

therefore 

𝑝(𝑥, 𝑡) = cos(𝜔𝑡) (𝐴 cos (
𝜔

𝑣
𝑥) + 𝐵 sin (

𝜔

𝑣
𝑥)) 

2. The condition 𝜕𝑝

𝜕𝑥
(0, 𝑡) = 𝜔

𝑣
𝐵 cos(𝜔𝑡) = 0 implies 𝐵 = 0, and therefore 𝑝(𝑥, 𝑡) =

𝐴 cos(𝜔𝑡) cos (
𝜔

𝑣
𝑥). The condition 𝜕𝑝

𝜕𝑥
(𝐿, 𝑡) = −

𝜔

𝑣
𝐴 cos(𝜔𝑡) sin (

𝜔

𝑣
𝐿) = 0 implies 

sin (
𝜔

𝑣
𝐿) = 0, and therefore 𝜔

𝑣
𝐿 = 𝑛𝜋. This gives 

𝑝(𝑥, 𝑡) = 𝐴 cos (
𝑛𝜋𝑣

𝐿
𝑡) cos (
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3. From the condition 𝜔
𝑣

𝐿 = 𝑛𝜋 we have 𝜔 =  
𝑛𝜋𝑣

𝐿
, which means 

𝑓 =
𝜔

2𝜋
=

𝑛𝑣

2𝐿
, 𝑛 ∈ ℤ 

Point particle colliding elastically with a moving wall 

1. From the moving frame’s view, the lab is moving with velocity −𝑉𝑥 , and since velocities add 
(as vectors), the velocity of the particle in the moving frame is 𝒗′ = 𝒗 − 𝑉𝑥 , which means 

𝑣𝑥
′ = 𝑣𝑥 − 𝑉𝑥 . 

2. In the frame of the wall, the particle will recoil with the same speed perpendicular to the 
wall as the particle’s speed before the collision, but in the opposite direction. That is, 

𝑣𝑥
′′ = −𝑣𝑥

′ = 𝑉𝑥 − 𝑣𝑥. 
3. Once again, using velocity addition, we have 𝑣𝑥

′′′ = 𝑣𝑥
′′ + 𝑉𝑥. Substituting our expression 

from part 2, we have 
𝑣𝑥

′′ = 2𝑉𝑥 − 𝑣𝑥 . 


