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Homework 6

Due date: Wednesday, March 13

Velocity of a relativistic particle

In Physics 1116 (or 2216) you learned that the energy, rest mass and momentum of a
particle are related as (units where c = 1)

E =
√
M2 + P 2 .

Then, in this course you were told that E and P have wave counterparts ω = E/h̄,
k = P/h̄, where h̄ is Planck’s constant divided by 2π. Defining the constant m =
M/h̄, the kinematic relationship above looks like a dispersion relation:

ω(k) =
√
m2 + k2 .

Another thing you learned in 2218 is that the speed of a wave is

v =
ω

k
=
E

P
.

But in 1116 / 2216 you also learned that

E = mγ P = mγv ,

where γ = 1/
√

1− v2, and therefore

v =
P

E
.

How can two courses disagree on something as basic as what goes in the numerator
and denominator?! Can you resolve this paradox?

Hint 1: Units are not going to help you because c is available to convert length and
time units.

Hint 2: What “group” of ideas are relevant when describing a particle? It might be a
good idea to discuss this as a “group”.
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Coupled pendulum dispersion relation

So far we have only considered dispersion relations for waves in a continuum medium
(string, water-surface, co-ax). Are there new features when the medium is discrete,
like the torsionally coupled pendulums in assignment 2?

Here are the equations for the system of coupled pendulums you derived, in the small
amplitude (small θ) limit:

θ̈n = −ω2
0 θn + τ (θn−1 − 2θn + θn+1) . (1)

We’ve introduced two symbols for combinations of the original parameters:

ω2
0 =

mgr

I
, τ =

κ

I
.

1. State in words what physical effects are quantified by ω0 and τ .

2. Confirm that
θn(t) = A cos(ωt) cos(kn) (2)

is a valid normal-mode solution of the equations (1) provided the normal-mode
frequency has the following dispersion relation:

ω(k) =
√
ω2
0 + 2τ(1− cos k) .

3. Here’s how discreteness enters the analysis. Consider two k’s that differ by an
integer multiple of 2π, say k1 and k2 = k1 + 2πK, where K = 0,±1,±2 etc.
Show that the mode with parameter k1 is exactly the same mode as the one with
parameter k2.

4. Since adding any integer multiple of 2π to k does not change the mode, we
may restrict the range of k to be between −π and π, because any other k gives
the same mode as a mode in that range. Plot the dispersion relation ω(k) in
that range of k. What is the minimum frequency, ωmin? What is the maximum
frequency, ωmax?
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Organ pipe, both ends open

This problem gives you another chance to prove you can solve standard normal mode
problems. To receive credit you need to clearly explain the steps to your solution.

An organ pipe extends from x = 0 to x = L and has both ends open. The pressure
p(x, t) in the pipe satisfies the wave equation with wave velocity v. Because of the
open ends,

∂p

∂x
(0, t) = 0 ,

∂p

∂x
(L, t) = 0 .

1. Write down a general normal-mode solution.

2. What constraints do the two boundary conditions impose on your normal modes?

3. Express the possible normal mode frequencies in terms of the parameters v and
L.

Point particle colliding elastically with a moving wall

A point particle, moving in any number of dimensions, maintains a constant velocity
until it encounters a very massive moving wall. Model the collision with the wall by
going into the frame co-moving with the wall. In this frame the wall is at rest and only
the particle’s velocity-component perpendicular to the wall is changed. The change
is simply that the sign of the velocity component is flipped, since that preserves the
kinetic energy (an elastic collision). Call x the coordinate perpendicular to the wall,
and let Vx be the wall velocity and vx the corresponding component of the particle
velocity.

Your calculation involves three steps:

1. Find v′x , the particle velocity in the wall’s rest frame. You may use the Galilean
transformation because |Vx| � c.

2. Obtain v′′x , the particle velocity in the wall’s rest frame after the collision.

3. Finally, transform back to the “lab” frame to obtain the velocity v′′′x after the
collision.


