
Water surface wave potential energy 

1. The potential energy of a volume element 𝑑𝑉  with density 𝜌 at height 𝑧 is given by 𝜌𝑔𝑧𝑑𝑉. 

The total potential energy is then given by Δ𝑈𝑔 = ∫ ∫ ∫ 𝜌𝑔𝑧𝑑𝑧𝑑𝑥𝑑𝑦
𝑠(𝑥)

0

𝜆

0

𝐿𝑦

0
=

1

2
𝜌𝑔𝐿𝑦 ∫ 𝑠(𝑥)2𝑑𝑥

𝜆

0
 =  

1

2
𝜌𝑔ℎ2𝐿𝑦 ∫ cos2(𝑘𝑥) 𝑑𝑥

𝜆

0
=

1

4
𝜌𝑔ℎ2𝐿𝑦 ∫ (1 + cos(2𝑘𝑥))𝑑𝑥

𝜆

0
 . The 

second term in the integrand vanishes, since cos (2𝑘𝑥) oscillates around zero, with the 
positive and negative areas cancelling out. The gravitational potential energy is then Δ𝑈 =
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2. Let the new area be denoted 𝐴′ and the equilibrium area 𝐴0, then 𝐴′ =
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cos(2𝑘𝑥) 𝑑𝑥. As in part 1,  the second term in the integrand vanishes, and we have  
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3. The surface energy per unit area is 
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Motion of fluid elements in water-surface waves 

1. We know 𝑣𝑧(𝑥, 𝑧 = 0) =  �̇�(𝑥, 𝑡) using the “small ℎ” approximation. Therefore, �̇�(𝑥, 𝑡) =
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For the case of the running water, we have �̇�(𝑥, 𝑡) = ℎ(− sin(𝜔𝑡) cos(𝑘𝑥) +
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2. The position is simply the time integral of the velocity, thus we have for the standing water 
surface 
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Where we have chosen 𝑡0 such that the average of 𝑝𝑥 , 𝑝𝑧  is 𝑥, 𝑧. For the case of running 
water, we have 
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3. For plotting, it is convenient to write the above equations in vector form. For the standing 
case, we have 
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We see that in this case the time dependence is a periodic function multiplying both 
coordinates, implying linear oscillations around (𝑥, 𝑧). For the running case, we have 
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This is the parametric form for the equation of a circle with center (𝑥, 𝑧), so in this case we 
have circular motion. Below are the sketches for the standing (left) and running (right) 
cases. 

 

Rectangular wave packets 

1.  

2. The integral can be computed as follows 
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3. Using the sum and difference of angles trigonometric identities, we see that 
sin((𝑘0 + 𝛥)𝑥) − sin((𝑘0 − 𝛥)𝑥) = 2 sin(Δ𝑥) cos(𝑘0𝑥), so we can write 
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This is the product of an infinite oscillatory function, cos(𝑘0𝑥), and an envelope function 

that decays to 0 for large |𝑥|, 
sin (Δ𝑥)

Δ𝑥
.  



4. The width of the envelope is 𝛿𝑥 =  
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Water-surface wave dispersion 

1. Recall the dispersion relation is given by 𝜔(𝑘) = √
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3. The speed of a single mode 𝑘  is given by 𝑣 =
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wavelength modes will travel faster. In the short wavelength regime, we have 𝑣 ≈
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modes will travel faster. In the top animation, we see the longer wavelengths travel faster, 
and in the lower animation, we see the opposite is true. Therefore, the top animation 
corresponds to longer wavelengths. 


