Co-ax boundary conditions

1. We know the surface charge density at the inner conductor, with radius r, is $\sigma(z,t) = \frac{\kappa \epsilon_0}{a} f(z,t)$. We also know f satisfies the wave equation with velocity $\frac{c}{\sqrt{\kappa}}$, which means $\sigma(z,t)$ also satisfies the wave equation with velocity $\frac{c}{\sqrt{\kappa}}$. The most general solution to the wave equation, as we have seen, is $\tilde{f}(z - vt) + \tilde{g}(z + vt)$ (I have used \tilde{f} and \tilde{g} to avoid confusion with the f and g the appear in the expressions for E and B), so the most general form of σ is

$$\sigma(z,t) = \tilde{f}\left(z - \frac{c}{\sqrt{\kappa}}t\right) + \tilde{g}\left(z + \frac{c}{\sqrt{\kappa}}t\right).$$

2. In the previous homework we saw the equation implying conservation of charge is $\frac{\partial J}{\partial z} = -\frac{\partial \sigma}{\partial t}$, which means $\frac{\partial J}{\partial z} = \frac{c}{\sqrt{\kappa}} \left(\tilde{f}' \left(z - \frac{c}{\sqrt{\kappa}} t \right) - \tilde{g}' \left(z + \frac{c}{\sqrt{\kappa}} t \right) \right) = \frac{c}{\sqrt{\kappa}} \frac{\partial}{\partial z} \left(\tilde{f} \left(z - \frac{c}{\sqrt{\kappa}} t \right) - \tilde{g} \left(z + \frac{c}{\sqrt{\kappa}} t \right) \right)$, which means

$$j(z,t) = \frac{c}{\sqrt{\kappa}} \left(\tilde{f}\left(z - \frac{c}{\sqrt{\kappa}}t\right) - \tilde{g}\left(z + \frac{c}{\sqrt{\kappa}}t\right) \right)$$

- 3. If the cable is open-ended at z = 0, the current at that point will be 0, so $j(0,t) = \frac{c}{\sqrt{\kappa}} \left(\tilde{f} \left(-\frac{c}{\sqrt{\kappa}} t \right) \tilde{g} \left(\frac{c}{\sqrt{\kappa}} t \right) \right) = 0$, which means $\tilde{f}(-y) = \tilde{g}(y)$. In this case we have $\sigma(z,t) = \tilde{f} \left(z - \frac{c}{\sqrt{\kappa}} t \right) + \tilde{f} \left(-z - \frac{c}{\sqrt{\kappa}} t \right)$ $j(z,t) = \frac{c}{\sqrt{\kappa}} \left(\tilde{f} \left(z - \frac{c}{\sqrt{\kappa}} t \right) - \tilde{f} \left(-z - \frac{c}{\sqrt{\kappa}} t \right) \right)$
- 4. In the case where the cable is shorted at z = 0, we have that the potential there must be 0, meaning the electric field is 0, and therefore $\sigma = 0$, since σ and E are both proportional to f. Therefore $\sigma(0,t) = \tilde{f}\left(-\frac{c}{\sqrt{\kappa}}t\right) + \tilde{g}\left(\frac{c}{\sqrt{\kappa}}t\right) = 0$, which means $-\tilde{f}(-y) = \tilde{g}(y)$. In this case, we have

$$\sigma(z,t) = \tilde{f}\left(z - \frac{c}{\sqrt{\kappa}}t\right) - \tilde{f}\left(-z - \frac{c}{\sqrt{\kappa}}t\right)$$
$$i(z,t) = \frac{c}{\sqrt{\kappa}}\left(\tilde{f}\left(z - \frac{c}{\sqrt{\kappa}}t\right) + \tilde{g}\left(-z - \frac{c}{\sqrt{\kappa}}t\right)\right).$$

5. The reflected pulse is \tilde{g} , which in this case will be positive since $\tilde{g}(y) = \tilde{f}(-y)$, and \tilde{f} is positive. If the oscilloscope is connected at $z = z_0$, the time from when the pulse is sent to when the reflected pulse is seen is $\frac{2z_0\sqrt{\kappa}}{c}$, since the pulse must get to z = 0 from $z = z_0$ and then the reflected has to get to $z = z_0$ from z = 0 with speed $\frac{c}{\sqrt{\kappa}}$. Thus at $t = \frac{2z_0\sqrt{\kappa}}{c}$ the two pulses will add together. An example of a possible trace sketch is shown.

6. The reflected pulse will be \tilde{g} negative since $\tilde{g}(y) = -\tilde{f}(-y)$, and \tilde{f} is positive. At $t = \frac{2z_0\sqrt{\kappa}}{c}$ the reflected pulse will cancel out the emitted pulse. An example of a possible trace sketch is shown.

Hanging chain normal modes

1. Letting $y(z,t) = \cos(\omega t) f_{\omega}(z)$, we find $f_{\omega}(z) \frac{d^2 \cos(\omega t)}{dt^2} = g \cos(\omega t) \frac{d}{dz} \left(z \frac{df_{\omega}(z)}{dz} \right)$. The left side becomes $-\omega^2 f_{\omega}(z) \cos(\omega t)$, while the right side becomes $g \cos(\omega t) \left(\frac{df_{\omega}(z)}{dz} + z \frac{d^2 f_{\omega}(z)}{dz^2} \right)$. Dividing out the common factor of $\cos(\omega t)$ and rearranging, we have

$$z\frac{d^{2}f_{\omega}(z)}{dz^{2}} + \frac{df_{\omega}(z)}{dz} + \frac{\omega^{2}}{g}f_{\omega}(z) = 0.$$
2. Let $u = c_{\omega}\sqrt{z}$. Then, $z = \frac{u^{2}}{c_{\omega}^{2}}, \frac{d}{dz} = \frac{du}{dz}\frac{d}{du} = \frac{1}{2}\frac{c_{\omega}}{\sqrt{z}}\frac{d}{du} = \frac{1}{2}\frac{c_{\omega}^{2}}{u}\frac{d}{du}, \text{ and } \frac{d^{2}}{dz^{2}} = \frac{d}{dz}\left(\frac{d}{dz}\right) = \frac{1}{2}\frac{c_{\omega}^{2}}{u}\frac{d}{du}\left(\frac{1}{2}\frac{c_{\omega}^{2}}{u}\frac{d}{du}\right) = \frac{1}{4}\frac{c_{\omega}^{4}}{u}\frac{d}{du}\left(\frac{1}{u}\frac{d}{du}\right) = \frac{c_{\omega}^{4}}{4}\left(\frac{1}{u^{2}}\frac{d^{2}}{du^{2}} - \frac{1}{u^{3}}\frac{d}{du}\right).$ With this, we have
$$z\frac{d^{2}f_{\omega}(z)}{dz^{2}} + \frac{df_{\omega}(z)}{dz} + \frac{\omega^{2}}{g}f_{\omega}(z) = 0 \rightarrow \frac{u^{2}}{c_{\omega}^{2}}\frac{c_{\omega}^{4}}{4}\left(\frac{1}{u^{2}}\frac{d^{2}f_{\omega}}{du^{2}} - \frac{1}{u^{3}}\frac{df_{\omega}}{du}\right) + \frac{1}{2}\frac{c_{\omega}^{2}}{u}\frac{df_{\omega}}{du} + \frac{\omega^{2}}{g}f_{\omega} = 0$$
Simplifying the second equation, we get $\frac{c_{\omega}^{2}}{4}\frac{d^{2}f_{\omega}}{du^{2}} + \frac{c_{\omega}^{2}}{4}\frac{1}{u}\frac{df_{\omega}}{du} + \frac{\omega^{2}}{g}f_{\omega} = 0$. Multiplying across by $\frac{4u}{c_{\omega}^{2}}$, we finally have
$$d^{2}f_{\omega} = df_{\omega} - 4\omega^{2}$$

$$u\frac{d^2f_{\omega}}{du^2} + \frac{df_{\omega}}{du} + \frac{4\omega^2}{gc_{\omega}^2} u f_{\omega} = 0,$$

Which is exactly the defining equation of $J_0(u)$ provided $\frac{4\omega^2}{gc_{\omega}^2} = 1$, which implies $c_{\omega} = \frac{2\omega}{\sqrt{g}}$, and therefore $f_{\omega}(z) = J_0(u) = J_0\left(2\omega\sqrt{\frac{z}{g}}\right)$.

3. We know $f_{\omega}(L) = 0$, because the chain is fixed at z = L. That means $J_0\left(2\omega\sqrt{\frac{L}{g}}\right) = 0$, which implies $2\omega\sqrt{\frac{L}{g}}$ is a zero of J_0 . Substituting $\omega = \frac{2\pi}{T}$, we have $\frac{4\pi}{T}\sqrt{\frac{L}{g}}$ is a zero of J_0 . Therefore the periods of the first three normal modes are

$$\frac{4\pi}{2.40483} \sqrt{\frac{L}{g}}, \frac{4\pi}{5.52008} \sqrt{\frac{L}{g}}, \frac{4\pi}{8.65373} \sqrt{\frac{L}{g}}$$

Circuit model for myelinated nerve fibers

1. In homework 2 we saw the capacitance for a parallel plate capacitor is given by $C = \kappa \epsilon_0 \frac{A}{d}$, where A is the area of the plates and d the thickness between the plates. In this case, the

"plates" are actually cylinders with radius r (we can ignore the difference in radius between the cylinders), and width w. The area is then $2\pi rw$. The capacitance is then

$$C = \frac{2\pi\kappa\epsilon_0 rw}{d}.$$

.µm, d = 6 nm, and κ = 7, this gives
$$C = 14\pi\epsilon_0 \frac{5}{6} \times 10^{-3} \text{m} = 3.2 \times 10^{-13} \text{ F} = 0.32 \text{ pF}$$

We'll keep an extra significant figure to prevent rounding error in the next parts.

2. The resistance *R* is related to the resistivity by $R = \frac{\rho L}{A}$, where *A* is the cross-sectional area, and *L* is the length of the resistor. The cross-sectional area is πr^2 , so

$$R=\frac{\rho L}{\pi r^2}.$$

With $r=5\mu m$, L=1~mm, and $ho=1~\Omega m$, we have

$$R = \frac{10^9}{25\pi} \Omega = 1.3 \times 10^7 \Omega = 13 \text{ M}\Omega.$$

3. The voltage at the *n*th capacitor is $\frac{q(n,t)}{c}$, and the voltage drop across the *n*th resistor is V = i(n,t)R. Therefore, $\frac{q(n,t)}{c} - i(n,t)R = \frac{q(n+1,t)}{c}$. Solving for i(n,t), we get $i(n,t) = \frac{1}{RC}(q(n,t) - q(n+1,t))$. Taking the derivative with respect to time, we find $\frac{\partial i(n,t)}{\partial t} = \frac{1}{RC}(\frac{\partial q(n,t)}{\partial t} - \frac{\partial q(n+1,t)}{\partial t})$, but $\frac{\partial q(n,t)}{\partial t}$ is the rate of change of the current in the *n*th capacitor, which is the difference between i(n-1,t), the current flowing into the capacitor from the previous segment, and i(n,t). Substituting this in, we have

$$\frac{\partial i(n,t)}{\partial t} = \frac{1}{RC} \left(i(n-1,t) - 2i(n,t) - i(n+1,t) \right).$$

In the continuous limit, the part in parenthesis as we've seen before becomes $\Delta x^2 \frac{\partial^2 l(t)}{\partial x^2}$, with $\Delta x = L$, the length of one cell, and the equation becomes

$$\frac{\partial i(t)}{\partial t} = \frac{\Delta x^2}{RC} \frac{\partial^2 i}{\partial x^2}.$$

The time constant RC is

With $r = 5\mu m$, $w = 1\mu m$,

$$RC = 1.3 \times 10^7 \times 3.2 \times 10^{-13} \text{s} = 4 \times 10^{-6} \text{ s} = 4 \,\mu\text{s}$$

This is the time for a single cell to respond. In the example of a pianist, the distance between the fingers and the brain is around 1 m, or about 1000 cells. The total response time is about 4 ms. 20 notes per second gives a time of $0.05 \text{ s} = 50 \text{ ms} = 5 \times 10^4 \text{ }\mu\text{s}$, or about 10 times the time calculated above, but as pointed out, this is not really the unconscious reaction time.

4. The equation derived in part 3 does not have time reversal symmetry, since $\frac{\partial i}{\partial t} = -\frac{\partial i}{\partial t'}$, where t' = -t.