Co-ax boundary conditions

1. We know the surface charge density at the inner conductor, with radius r, is $\sigma(z, t)=$ $\frac{\kappa \epsilon_{0}}{a} f(z, t)$. We also know f satisfies the wave equation with velocity $\frac{c}{\sqrt{\kappa}}$, which means $\sigma(z, t)$ also satisfies the wave equation with velocity $\frac{c}{\sqrt{\kappa}}$. The most general solution to the wave equation, as we have seen, is $\tilde{f}(z-v t)+\tilde{g}(z+v t)$ (I have used \tilde{f} and \tilde{g} to avoid confusion with the f and g the appear in the expressions for \boldsymbol{E} and \boldsymbol{B}), so the most general form of σ is

$$
\sigma(z, t)=\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)+\tilde{g}\left(z+\frac{c}{\sqrt{\kappa}} t\right) .
$$

2. In the previous homework we saw the equation implying conservation of charge is $\frac{\partial j}{\partial z}=$
$-\frac{\partial \sigma}{\partial t^{\prime}}$, which means $\frac{\partial j}{\partial z}=\frac{c}{\sqrt{\kappa}}\left(\tilde{f}^{\prime}\left(z-\frac{c}{\sqrt{\kappa}} t\right)-\tilde{g}^{\prime}\left(z+\frac{c}{\sqrt{\kappa}} t\right)\right)=\frac{c}{\sqrt{\kappa}} \frac{\partial}{\partial z}\left(\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)-\right.$ $\left.\tilde{g}\left(z+\frac{c}{\sqrt{\kappa}} t\right)\right)$, which means

$$
j(z, t)=\frac{c}{\sqrt{\kappa}}\left(\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)-\tilde{g}\left(z+\frac{c}{\sqrt{\kappa}} t\right)\right)
$$

3. If the cable is open-ended at $z=0$, the current at that point will be 0 , $\operatorname{so} j(0, t)=$ $\frac{c}{\sqrt{\kappa}}\left(\tilde{f}\left(-\frac{c}{\sqrt{\kappa}} t\right)-\tilde{g}\left(\frac{c}{\sqrt{\kappa}} t\right)\right)=0$, which means $\tilde{f}(-y)=\tilde{g}(y)$. In this case we have

$$
\begin{gathered}
\sigma(z, t)=\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)+\tilde{f}\left(-z-\frac{c}{\sqrt{\kappa}} t\right) \\
j(z, t)=\frac{c}{\sqrt{\kappa}}\left(\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)-\tilde{f}\left(-z-\frac{c}{\sqrt{\kappa}}\right)\right)
\end{gathered}
$$

4. In the case where the cable is shorted at $z=0$, we have that the potential there must be 0 , meaning the electric field is 0 , and therefore $\sigma=0$, since σ and E are both proportional to f. Therefore $\sigma(0, t)=\tilde{f}\left(-\frac{c}{\sqrt{\kappa}} t\right)+\tilde{g}\left(\frac{c}{\sqrt{\kappa}} t\right)=0$, which means $-\tilde{f}(-y)=\tilde{g}(y)$. In this case, we have

$$
\begin{gathered}
\sigma(z, t)=\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)-\tilde{f}\left(-z-\frac{c}{\sqrt{\kappa}} t\right) \\
j(z, t)=\frac{c}{\sqrt{\kappa}}\left(\tilde{f}\left(z-\frac{c}{\sqrt{\kappa}} t\right)+\tilde{g}\left(-z-\frac{c}{\sqrt{\kappa}} t\right)\right) .
\end{gathered}
$$

5. The reflected pulse is \tilde{g}, which in this case will be positive since $\tilde{g}(y)=\tilde{f}(-y)$, and \tilde{f} is positive. If the oscilloscope is connected at $z=z_{0}$, the time from when the pulse is sent to when the reflected pulse is seen is $\frac{2 z_{0} \sqrt{\kappa}}{c}$, since the pulse must get to $z=0$ from $z=z_{0}$ and then the reflected has to get to $z=$ z_{0} from $z=0$ with speed $\frac{c}{\sqrt{\kappa}}$. Thus at $t=\frac{2 z_{0} \sqrt{\kappa}}{c}$ the two pulses will add together. An example of a possible trace sketch is shown.

6. The reflected pulse will be \tilde{g} negative since $\tilde{g}(y)=-\tilde{f}(-y)$, and \tilde{f} is positive. At $t=\frac{2 z_{0} \sqrt{\kappa}}{c}$ the reflected pulse will cancel out the emitted pulse. An example of a possible trace sketch is shown.

Hanging chain normal modes

1. Letting $y(z, t)=\cos (\omega t) f_{\omega}(z)$, we find $f_{\omega}(z) \frac{d^{2} \cos (\omega t)}{d t^{2}}=g \cos (\omega t) \frac{d}{d z}\left(z \frac{d f_{\omega}(z)}{d z}\right)$. The left side becomes $-\omega^{2} f_{\omega}(z) \cos (\omega t)$, while the right side becomes $g \cos (\omega t)\left(\frac{d f_{\omega}(z)}{d z}+z \frac{d^{2} f_{\omega}(z)}{d z^{2}}\right)$. Dividing out the common factor of $\cos (\omega t)$ and rearranging, we have

$$
z \frac{d^{2} f_{\omega}(z)}{d z^{2}}+\frac{d f_{\omega}(z)}{d z}+\frac{\omega^{2}}{g} f_{\omega}(z)=0 .
$$

2. Let $u=c_{\omega} \sqrt{z}$. Then, $z=\frac{u^{2}}{c_{\omega}^{2}}, \frac{d}{d z}=\frac{d u}{d z} \frac{d}{d u}=\frac{1}{2} \frac{c_{\omega}}{\sqrt{z}} \frac{d}{d u}=\frac{1}{2} \frac{c_{\omega}^{2}}{u} \frac{d}{d u}$, and $\frac{d^{2}}{d z^{2}}=\frac{d}{d z}\left(\frac{d}{d z}\right)=$ $\frac{1}{2} \frac{c_{\omega}^{2}}{u} \frac{d}{d u}\left(\frac{1}{2} \frac{c_{\omega}^{2}}{u} \frac{d}{d u}\right)=\frac{1}{4} \frac{c_{\omega}^{4}}{u} \frac{d}{d u}\left(\frac{1}{u} \frac{d}{d u}\right)=\frac{c_{\omega}^{4}}{4}\left(\frac{1}{u^{2}} \frac{d^{2}}{d u^{2}}-\frac{1}{u^{3}} \frac{d}{d u}\right)$. With this, we have $z \frac{d^{2} f_{\omega}(z)}{d z^{2}}+\frac{d f_{\omega}(z)}{d z}+\frac{\omega^{2}}{g} f_{\omega}(z)=0 \rightarrow \frac{u^{2}}{c_{\omega}^{2}} \frac{c_{\omega}^{4}}{4}\left(\frac{1}{u^{2}} \frac{d^{2} f_{\omega}}{d u^{2}}-\frac{1}{u^{3}} \frac{d f_{\omega}}{d u}\right)+\frac{1}{2} \frac{c_{\omega}^{2}}{u} \frac{d f_{\omega}}{d u}+\frac{\omega^{2}}{g} f_{\omega}=0$ Simplifying the second equation, we get $\frac{c_{\omega}^{2}}{4} \frac{d^{2} f_{\omega}}{d u^{2}}+\frac{c_{\omega}^{2}}{4} \frac{1}{u} \frac{d f_{\omega}}{d u}+\frac{\omega^{2}}{g} f_{\omega}=0$. Multiplying across by $\frac{4 u}{c_{\omega}^{2}}$, we finally have

$$
u \frac{d^{2} f_{\omega}}{d u^{2}}+\frac{d f_{\omega}}{d u}+\frac{4 \omega^{2}}{g c_{\omega}^{2}} u f_{\omega}=0
$$

Which is exactly the defining equation of $J_{0}(u)$ provided $\frac{4 \omega^{2}}{g c_{\omega}^{2}}=1$, which implies $c_{\omega}=\frac{2 \omega}{\sqrt{g}}$, and therefore $f_{\omega}(z)=J_{0}(u)=J_{0}\left(2 \omega \sqrt{\frac{z}{g}}\right)$.
3. We know $f_{\omega}(L)=0$, because the chain is fixed at $z=L$. That means $J_{0}\left(2 \omega \sqrt{\frac{L}{g}}\right)=0$, which implies $2 \omega \sqrt{\frac{L}{g}}$ is a zero of J_{0}. Substituting $\omega=\frac{2 \pi}{T}$, we have $\frac{4 \pi}{T} \sqrt{\frac{L}{g}}$ is a zero of J_{0}. Therefore the periods of the first three normal modes are

$$
\frac{4 \pi}{2.40483} \sqrt{\frac{L}{g}}, \frac{4 \pi}{5.52008} \sqrt{\frac{L}{g}}, \frac{4 \pi}{8.65373} \sqrt{\frac{L}{g}}
$$

Circuit model for myelinated nerve fibers

1. In homework 2 we saw the capacitance for a parallel plate capacitor is given by $C=\kappa \epsilon_{0} \frac{A}{d^{\prime}}$ where A is the area of the plates and d the thickness between the plates. In this case, the
"plates" are actually cylinders with radius r (we can ignore the difference in radius between the cylinders), and width w. The area is then $2 \pi r w$. The capacitance is then

$$
C=\frac{2 \pi \kappa \epsilon_{0} r w}{d}
$$

With $r=5 \mu m, w=1 \mu m, d=6 \mathrm{~nm}$, and $\kappa=7$, this gives

$$
C=14 \pi \epsilon_{0} \frac{5}{6} \times 10^{-3} \mathrm{~m}=3.2 \times 10^{-13} \mathrm{~F}=0.32 \mathrm{pF}
$$

We'll keep an extra significant figure to prevent rounding error in the next parts.
2. The resistance R is related to the resistivity by $R=\frac{\rho L}{A}$, where A is the cross-sectional area, and L is the length of the resistor. The cross-sectional area is πr^{2}, so

$$
R=\frac{\rho L}{\pi r^{2}} .
$$

With $r=5 \mu m, L=1 \mathrm{~mm}$, and $\rho=1 \Omega \mathrm{~m}$, we have

$$
R=\frac{10^{9}}{25 \pi} \Omega=1.3 \times 10^{7} \Omega=13 \mathrm{M} \Omega
$$

3. The voltage at the nth capacitor is $\frac{q(n, t)}{C}$, and the voltage drop across the nth resistor is $V=$ $i(n, t) R$. Therefore, $\frac{q(n, t)}{c}-i(n, t) R=\frac{q(n+1, t)}{c}$. Solving for $i(n, t)$, we get $i(n, t)=$ $\frac{1}{R C}(q(n, t)-q(n+1, t))$. Taking the derivative with respect to time, we find $\frac{\partial i(n, t)}{\partial t}=$ $\frac{1}{R C}\left(\frac{\partial q(n, t)}{\partial t}-\frac{\partial q(n+1, t)}{\partial t}\right)$, but $\frac{\partial q(n, t)}{\partial t}$ is the rate of change of the current in the nth capacitor, which is the difference between $i(n-1, t)$, the current flowing into the capacitor from the previous segment, and $i(n, t)$, the current flowing out of it into the next segment. Therefore, $\frac{\partial q(n, t)}{\partial t}=i(n-1, t)-i(n, t)$. Substituting this in, we have

$$
\frac{\partial i(n, t)}{\partial t}=\frac{1}{R C}(i(n-1, t)-2 i(n, t)-i(n+1, t)) .
$$

In the continuous limit, the part in parenthesis as we've seen before becomes $\Delta x^{2} \frac{\partial^{2} i(t)}{\partial x^{2}}$, with $\Delta x=L$, the length of one cell, and the equation becomes

$$
\frac{\partial i(t)}{\partial t}=\frac{\Delta x^{2}}{R C} \frac{\partial^{2} i}{\partial x^{2}}
$$

The time constant $R C$ is

$$
R C=1.3 \times 10^{7} \times 3.2 \times 10^{-13} \mathrm{~s}=4 \times 10^{-6} \mathrm{~s}=4 \mu \mathrm{~s}
$$

This is the time for a single cell to respond. In the example of a pianist, the distance between the fingers and the brain is around 1 m , or about 1000 cells. The total response time is about 4 ms . 20 notes per second gives a time of $0.05 \mathrm{~s}=50 \mathrm{~ms}=5 \times 10^{4} \mu \mathrm{~s}$, or about 10 times the time calculated above, but as pointed out, this is not really the unconscious reaction time.
4. The equation derived in part 3 does not have time reversal symmetry, since $\frac{\partial i}{\partial t}=-\frac{\partial i}{\partial t^{\prime \prime}}$, where $t^{\prime}=-t$.

