
Co-ax boundary conditions 

1. We know the surface charge density at the inner conductor, with radius  𝑟, is 𝜎(𝑧, 𝑡) =
𝜅𝜖0

𝑎
𝑓(𝑧, 𝑡). We also know 𝑓 satisfies the wave equation with velocity 𝑐

√𝜅
, which means 𝜎(𝑧, 𝑡) 

also satisfies the wave equation with velocity 𝑐

√𝜅
.  The most general solution to the wave 

equation, as we have seen, is 𝑓(𝑧 − 𝑣𝑡) + �̃�(𝑧 + 𝑣𝑡) (I have used 𝑓 and �̃� to avoid confusion 
with the 𝑓 and 𝑔 the appear in the expressions for 𝑬 and 𝑩), so the most general form of 𝜎 is 

𝜎(𝑧, 𝑡) = 𝑓 (𝑧 −
𝑐

√𝜅
𝑡) + �̃� (𝑧 +

𝑐

√𝜅
𝑡). 

2. In the previous homework we saw the equation implying conservation of charge is 𝜕𝑗

𝜕𝑧
=

−
𝜕𝜎

𝜕𝑡
, which means 𝜕𝑗

𝜕𝑧
=

𝑐

√𝜅
 (𝑓′ (𝑧 −

𝑐

√𝜅
𝑡) − �̃�′ (𝑧 +

𝑐

√𝜅
𝑡)) =   

𝑐

√𝜅

𝜕

𝜕𝑧
(𝑓 (𝑧 −

𝑐

√𝜅
𝑡) −

�̃� (𝑧 +
𝑐

√𝜅
𝑡)), which means 

𝑗(𝑧, 𝑡) =
𝑐

√𝜅
(𝑓 (𝑧 −

𝑐

√𝜅
𝑡) − �̃� (𝑧 +

𝑐

√𝜅
𝑡)) 

3. If the cable is open-ended at 𝑧 = 0, the current at that point will be 0, so 𝑗(0, 𝑡) =
𝑐

√𝜅
(𝑓 (−

𝑐

√𝜅
𝑡) − �̃� (

𝑐

√𝜅
𝑡)) = 0, which means 𝑓(−𝑦) = �̃�(𝑦). In this case we have 

𝜎(𝑧, 𝑡) =  𝑓 (𝑧 −
𝑐

√𝜅
𝑡) + 𝑓 (−𝑧 −

𝑐

√𝜅
𝑡) 

𝑗(𝑧, 𝑡) =
𝑐

√𝜅
(𝑓 (𝑧 −

𝑐

√𝜅
𝑡) − 𝑓 (−𝑧 −

𝑐

√𝜅
)) 

4. In the case where the cable is shorted at 𝑧 = 0, we have that the potential there must be 0, 
meaning the electric field is 0, and therefore  𝜎 =  0, since 𝜎 and 𝐸 are both proportional to 

𝑓. Therefore 𝜎(0, 𝑡) = 𝑓 (−
𝑐

√𝜅
𝑡) + �̃� (

𝑐

√𝜅
𝑡) = 0, which means −𝑓(−𝑦) = �̃�(𝑦). In this case, 

we have 

𝜎(𝑧, 𝑡) = 𝑓 (𝑧 −
𝑐

√𝜅
𝑡) − 𝑓 (−𝑧 −

𝑐

√𝜅
𝑡) 

𝑗(𝑧, 𝑡) =
𝑐

√𝜅
(𝑓 (𝑧 −

𝑐

√𝜅
𝑡) + �̃� (−𝑧 −

𝑐

√𝜅
𝑡)). 

5. The reflected pulse is �̃�, which in this case will be positive since �̃�(𝑦) = 𝑓(−𝑦), and 𝑓 is 
positive. If the oscilloscope is connected at 𝑧 = 𝑧0, the time from when the pulse is sent to 

when the reflected pulse is seen is 2𝑧0√𝜅

𝑐
, since the pulse must 

get to 𝑧 = 0 from 𝑧 = 𝑧0 and then the reflected has to get to 𝑧 =

𝑧0 from 𝑧 = 0 with speed 𝑐

√𝜅
. Thus at 𝑡 =

2𝑧0√𝜅

𝑐
 the two pulses will 

add together. An example of a possible trace sketch is shown. 
 
 
 
 
 



6. The reflected pulse will be �̃� negative since �̃�(𝑦) = −𝑓(−𝑦), and 

𝑓 is positive. At 𝑡 =
2𝑧0√𝜅

𝑐
 the reflected pulse will cancel out the 

emitted pulse. An example of a possible trace sketch is shown. 

 

 

Hanging chain normal modes 

1. Letting 𝑦(𝑧, 𝑡) = cos(𝜔𝑡) 𝑓𝜔(𝑧), we find 𝑓𝜔(𝑧)
𝑑2 cos(𝜔𝑡)

𝑑𝑡2 = 𝑔 cos(𝜔𝑡)
𝑑

𝑑𝑧
(𝑧

𝑑𝑓𝜔(𝑧)

𝑑𝑧
). The left side 

becomes −𝜔2𝑓𝜔(𝑧) cos(𝜔𝑡), while the right side becomes 𝑔 cos(𝜔𝑡) (
𝑑𝑓𝜔(𝑧)

𝑑𝑧
+ 𝑧

𝑑2𝑓𝜔(𝑧)

𝑑𝑧2 ). 

Dividing out the common factor of cos(𝜔𝑡) and rearranging, we have 
 

𝑧
𝑑2𝑓𝜔(𝑧)

𝑑𝑧2
+

𝑑𝑓𝜔(𝑧)

𝑑𝑧
+

𝜔2

𝑔
𝑓𝜔(𝑧) = 0. 

2. Let 𝑢 =  𝑐𝜔√𝑧. Then, 𝑧 =
𝑢2

𝑐𝜔
2 , 𝑑

𝑑𝑧
=

𝑑𝑢

𝑑𝑧

𝑑

𝑑𝑢
=

1

2

𝑐𝜔

√𝑧

𝑑

𝑑𝑢
=

1

2

𝑐𝜔
2

𝑢

𝑑

𝑑𝑢
, and 𝑑2

𝑑𝑧2 =
𝑑

𝑑𝑧
(

𝑑

𝑑𝑧
) =

1

2

𝑐𝜔
2

𝑢

𝑑

𝑑𝑢
(

1

2

𝑐𝜔
2

𝑢

𝑑

𝑑𝑢
) =

1

4

𝑐𝜔
4

𝑢

𝑑

𝑑𝑢
(

1

𝑢

𝑑

𝑑𝑢
) =

𝑐𝜔
4

4
(

1

𝑢2

𝑑2

𝑑𝑢2 −
1

𝑢3

𝑑

𝑑𝑢
). With this, we have 

𝑧
𝑑2𝑓𝜔(𝑧)

𝑑𝑧2
+

𝑑𝑓𝜔(𝑧)

𝑑𝑧
+

𝜔2

𝑔
𝑓𝜔(𝑧) = 0 →

𝑢2

𝑐𝜔
2  

𝑐𝜔
4

4
(

1

𝑢2

𝑑2𝑓𝜔

𝑑𝑢2
−

1

𝑢3

𝑑𝑓𝜔

𝑑𝑢
) +

1

2

𝑐𝜔
2

𝑢

𝑑𝑓𝜔

𝑑𝑢
+

𝜔2

𝑔
𝑓𝜔 = 0  

Simplifying the second equation, we get 𝑐𝜔
2

4

𝑑2𝑓𝜔

𝑑𝑢2 +
𝑐𝜔

2

4

1

𝑢

𝑑𝑓𝜔

𝑑𝑢
+

𝜔2

𝑔
𝑓𝜔 = 0. Multiplying across by 

4𝑢

𝑐𝜔
2 , we finally have 

𝑢
𝑑2𝑓𝜔

𝑑𝑢2
+

𝑑𝑓𝜔

𝑑𝑢
+

4𝜔2

𝑔𝑐𝜔
2  𝑢 𝑓𝜔 = 0, 

Which is exactly the defining equation of 𝐽0(𝑢) provided 4𝜔2

𝑔𝑐𝜔
2 = 1, which implies 𝑐𝜔 =

2𝜔

√𝑔
, and 

therefore 𝑓𝜔(𝑧) = 𝐽0(𝑢) = 𝐽0 (2𝜔√
𝑧

𝑔
 ). 

3. We know 𝑓𝜔(𝐿) = 0, because the chain is fixed at 𝑧 = 𝐿. That means 𝐽0 (2𝜔√
𝐿

𝑔
 ) = 0, which 

implies 2𝜔√
𝐿

𝑔
 is a zero of 𝐽0. Substituting 𝜔 =

2𝜋

𝑇
, we have 4𝜋

𝑇
√

𝐿

𝑔
 is a zero of 𝐽0. Therefore the 

periods of the first three normal modes are 

4𝜋

2.40483
√

𝐿

𝑔
,

4𝜋

5.52008
√

𝐿

𝑔
,

4𝜋

8.65373
√

𝐿

𝑔
. 

 

Circuit model for myelinated nerve fibers 

1. In homework 2 we saw the capacitance for a parallel plate capacitor is given by 𝐶 = 𝜅𝜖0
𝐴

𝑑
, 

where 𝐴 is the area of the plates and 𝑑 the thickness between the plates. In this case, the 



“plates” are actually cylinders with radius 𝑟 (we can ignore the difference in radius between 
the cylinders), and width 𝑤. The area is then 2𝜋𝑟𝑤. The capacitance is then 

𝐶 =
2𝜋𝜅𝜖0𝑟𝑤

𝑑
. 

With 𝑟 = 5𝜇𝑚, 𝑤 = 1𝜇𝑚, 𝑑 = 6 𝑛𝑚, and 𝜅 = 7, this gives 

𝐶 = 14𝜋𝜖0

5

6
× 10−3m = 3.2 × 10−13 F = 0.32 pF 

We’ll keep an extra significant figure to prevent rounding error in the next parts. 

2. The resistance 𝑅 is related to the resistivity by 𝑅 =
𝜌𝐿

𝐴
, where 𝐴 is the cross-sectional area, 

and 𝐿 is the length of the resistor. The cross-sectional area is 𝜋𝑟2, so 

𝑅 =
𝜌𝐿

𝜋𝑟2
. 

With 𝑟 = 5𝜇𝑚, 𝐿 = 1 𝑚𝑚, and 𝜌 = 1 Ω𝑚, we have 

𝑅 =
109

25𝜋
 Ω = 1.3 × 107 Ω = 13 MΩ. 

3. The voltage at the 𝑛th capacitor is 𝑞
(𝑛,𝑡)

𝐶
, and the voltage drop across the 𝑛th resistor is 𝑉 =

𝑖(𝑛, 𝑡)𝑅. Therefore, 𝑞
(𝑛,𝑡)

𝐶
− 𝑖(𝑛, 𝑡)𝑅 =  

𝑞(𝑛+1,𝑡)

𝐶
. Solving for 𝑖(𝑛, 𝑡), we get 𝑖(𝑛, 𝑡) =

1

𝑅𝐶
(𝑞(𝑛, 𝑡) − 𝑞(𝑛 + 1, 𝑡)). Taking the derivative with respect to time, we find 𝜕𝑖(𝑛,𝑡)

𝜕𝑡
=

1

𝑅𝐶
 (

𝜕𝑞(𝑛,𝑡)

𝜕𝑡
−

𝜕𝑞(𝑛+1,𝑡)

𝜕𝑡
), but 𝜕𝑞(𝑛,𝑡)

𝜕𝑡
 is the rate of change of the current in the 𝑛th capacitor, 

which is the difference between 𝑖(𝑛 − 1, 𝑡), the current flowing into the capacitor from the 
previous segment, and 𝑖(𝑛, 𝑡), the current flowing out of it into the next segment. Therefore,  
𝜕𝑞(𝑛,𝑡)

𝜕𝑡
=  𝑖(𝑛 − 1, 𝑡) − 𝑖(𝑛, 𝑡). Substituting this in, we have  

𝜕𝑖(𝑛, 𝑡)

𝜕𝑡
=

1

𝑅𝐶
 (𝑖(𝑛 − 1, 𝑡) − 2𝑖(𝑛, 𝑡) − 𝑖(𝑛 + 1, 𝑡)). 

In the continuous limit, the part in parenthesis as we’ve seen before becomes Δ𝑥2 𝜕2𝑖(𝑡)

𝜕𝑥2 , 

with Δ𝑥 = 𝐿, the length of one cell, and the equation becomes 
𝜕𝑖( 𝑡)

𝜕𝑡
=

Δ𝑥2

𝑅𝐶

𝜕2𝑖

𝜕𝑥2
. 

The time constant 𝑅𝐶 is 
𝑅𝐶 = 1.3 × 107 × 3.2 × 10−13s = 4 × 10−6 s = 4 μs. 

This is the time for a single cell to respond. In the example of a pianist, the distance 
between the fingers and the brain is around 1 m, or about 1000 cells. The total response 
time is about 4 ms. 20 notes per second gives a time of 0.05 s = 50 ms = 5 × 104 μs, or 
about 10 times the time calculated above, but as pointed out, this is not really the 
unconscious reaction time. 

4. The equation derived in part 3 does not have time reversal symmetry, since 𝜕𝑖

𝜕𝑡
= −

𝜕𝑖

𝜕𝑡′, where 

𝑡′ = −𝑡. 


