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Homework 4

Due date: Tuesday, November 1

1. For the q-state Potts model in the mean field approximation: Find the transition tem-
perature, nature of the transition, and the critical exponents for magnetization and
susceptibility if the transition is continuous. The Potts model Hamiltonian is

H = −ε
∑

(ij)∈E
(qδ(si, sj)− 1)− h

∑
i∈V

(qδ(si, 1)− 1) ,

where E and V are respectively the edges and vertices of a hypercubic lattice graph
in D-dimensions (each vertex has degree 2D). In the mean field approximation, the
expression

βF = β〈H〉 − S

for the free energy F is minimized over the probability space where all spins have
equal and independent distributions. This probability distribution has only one pa-
rameter, the excess probability m that a spin takes value s = 1:

p1 = 1/q +m.

Here is the outline of your mean field calculation:

(a) Calculate 〈H〉.
(b) Calculate S.

(c) Find the value m∗ that minimizes F in the limit h → 0+. You will obtain
qualitatively different results in three cases: q > 2, q = 2, and 2 > q > 1.

(d) Find the transition temperature, where m∗ first becomes nonzero. In the perco-
lation problem (q → 1) the transition temperature is related to the critical bond
probability by pc = 1− e−βcε. What is the mean field estimate of pc?

(e) (e) Obtain the mean field estimates of the critical exponents β and γ defined by

m∗|h=0 ∝ (Tc − T )β

∂m∗

∂h

∣∣∣∣∣
h=0

= χ ∝ (Tc − T )−γ

for T → T−c when the transition is continuous. Compare with the percolation
exponents for f (fraction in finite clusters) and s (“size” of clusters).
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2. As the first step in transforming the Potts model into a field theory we rewrite the
Hamiltonian in terms of vector variables v(r) on the sites r of the lattice,

H = −ε
∑

(r,r′)∈E
v(r) · v(r′)− h

∑
r∈V

e1 · v(r),

and the vectors take discrete values in the set {e1, . . . , eq}. These “state-vectors” live
in a q − 1 dimensional Euclidean space and form the vertices of a regular q-simplex.
In order that the vector form of the Potts Hamiltonian agrees with the original form
we require that

eα · eα = q − 1, α = 1, . . . , q

eα · eβ = −1, α 6= β,

which together imply
q∑

α=1

eα = 0.

Show that these properties follow from the embedding of the q state-vectors in q − 1
dimensions given by the rows of the following q × (q − 1) matrix,

a −b −b · · · −b
−b a −b · · · −b
−b −b a · · · −b

...
...

...
...

...
−b −b −b · · · a
−1 −1 −1 · · · −1


for a particular choice of the numbers a and b. Also show that

q∑
α=1

eαi e
α
j = qδij.

3. The adjacent lattice site (edge) term of −βH for the Potts model Hamiltonian (prob-
lem 2) may be written abstractly as V TKV , where V is a vector of (q − 1)V com-
ponents (corresponding to the q − 1 vector components of the v(r)’s at all V lattice
sites r in the system). The Hubbard-Stratonovich transformation converts the trace
over the discrete variables V into a trace over continuous fields Ψ in one-to-one cor-
respondence with the components of V . An integral part of the transformation is
the evaluation of the associated coupling of the fields, ΨTK−1Ψ. Show that in the
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limit of slowly varying fields, so that the sum over sites may be approximated by an
integral,

ΨTK−1Ψ ≈ (βεD)−1
∫
dDr

q−1∑
i=1

(
Ψ2
i +

1

2D
|∇Ψi|2

)
.

[Hint: The eigenvectors of the matrix K are plane waves in r with constant polariza-
tion in the (q − 1)-space of the Potts model vectors v. The action of K−1 on these
eigenvectors is just to multiply the eigenvector by the inverse of the eigenvalue. Ex-
press the most general Ψ in terms of these eigenvectors and thereby obtain a formula
for ΨTK−1Ψ.]


