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Assignment 4

Due date: Wednesday, March 21

Only do three of the problems and respond to the short survey questions at the end.

Quantum state tomography

Use RRR to reconstruct a pure-state density matrix X from a set of measurements
µ1, µ2, . . . of operators H1, H2, . . . . As in the last assignment, your system is com-
prised of four qubits labeled 1-4. The values µ1, . . . , µ12 of the single qubit polariza-
tions are as follows:

σx σy σz

1 −1/4 0 0

2 −1/4 0 0

3 0 0 0

4 1/4 1/4 0

You have also measured the following products of two-qubit polarizations, measure-
ments µ13, . . . , µ39 :

σ2
x σ2

y σ2
z σ3

x σ3
y σ3

z σ4
x σ4

y σ4
z

σ1
x 0 1/4 −1/4 −1/4 1/4 0 0 0 0

σ1
y 0 1/4 0 −1/4 1/4 3/4 0 0 1/4

σ1
z 0 −1/4 0 −1/4 −1/4 0 0 0 0

For one of the RRR constraints, use the rank-1 (pure-state) constraint on X . The 40
linear equations TrX = 1, TrXHi = µi, i = 1, . . . , 39 will serve as the other RRR
constraint. Report your reconstruction of Xij = x∗ixj by its first row, X1j = x∗1xj ,
since this has no phase ambiguity. Order the 16 qubit basis states as in the previous
assignment.
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Complex Hadamard matrices

To what extent does knowledge of the magnitudes of all the elements of a unitary
matrix determine the matrix itself? For example, do magnitude measurements of the
3× 3 CKM1 matrix elements of particle physics determine this fundamental unitary
“mixing” matrix?

As an experiment, consider the case of n × n unitary matrices U that have equal-
magnitude elements. These are called complex Hadamard matrices because they
generalize the standard Hadamard matrices, where all elements are real and equal to
±1/
√
n. The Fourier matrices Fpq = exp(2πi p q/n)/

√
n show there exists at least

one complex Hadamard for each n. Note that multiplying rows or columns of U
by arbitrary phases does not change the magnitudes while keeping U unitary. We
therefore do not count these phase modifications as different and adopt the “Fourier
convention”, where phases are applied to make the first row and column have all
elements equal to 1/

√
n.

Use RRR to find 7 × 7 complex Hadamard matrices. Apply the Fourier phase con-
vention and check if you are finding matrices other than the Fourier matrix (or some
permutation applied to its rows or columns).

Antipodal kissing spheres

A configuration of 2k antipodal kissing spheres in dimension d is a set of vectors
v1, . . . , vk in Rd satisfying:

vi · vj = 1, i = j, (1)

|vi · vj| ≤
1

2
, i 6= j. (2)

The 2k unit-diameter spheres centered at±v1, . . . ,±vk would “kiss” a unit-diameter
sphere at the origin and not intersect each other.

Use RRR to find such configurations by searching for symmetric “dot-product” ma-
trices X subject to the rank-d constraint Xij = vi · vj and the element-wise equality
and inequality constraints implied by (1) and (2).

Check your program for the case d = 2, k = 3, where you know the answer. Next,
try d = 3 and k = 6 (the maximum possible). The solutions in this case are not rigid
— a quirk of three dimensions — so expect to find different dot products in different
runs. Finally, see if you can find k = 12 and k = 20 configurations in d = 4 and
d = 5, both of which are rigid.

1Cabibbo-Kobayashi-Maskawa
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There are two other standard formulations of this problem that can be used. Since
the programming for these is slightly more involved, only define the variables and
describe (in words and a few equations) the projections to the two constraint sets.

Start with the divide-and-concur formulation, where variables are suitably replicated
to enable independent easy projections to the “divide” constraint, and are forced to
agree by the “concur” constraint.

In the linear-relation formulation, secondary variables are introduced that are related
to the primary variables (v1, . . . , vk) by linear equations, and one of the RRR projec-
tions is to that linear relation. For the other RRR constraint you can independently
impose constraints on the primary and secondary variables.

Coloring the queens graph

Suppose n2 queens are placed on an n × n checkerboard. Can they be colored with
k colors so that no two attacking queens have the same color? Here is a k = 5 (the
minimum possible) solution for n = 5:

Use RRR to find colorings of queens graphs. Use either the tricky rank-(k − 1)
formulation on symmetric matrices from lecture, divide-and-concur, or the method of
linear relations. Remember that your Euclidean space encoding of color should have
complete permutation symmetry. For example, to encode red/green/blue (k = 3) you
could use the three vertices of a centered equilateral triangle in a plane, or even the
3D encoding [1, 0, 0], [0, 1, 0], [0, 0, 1].

Try to find colorings for n = 6 and n = 7, both with k = 7 (the minimum possible).
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Clique finding

For any pair i, j ∈ V of vertices in a graph G(V,E), denote by (i, j) ∈ E the
presence of an edge between those vertices. A k-clique of G is a subset C ⊂ V of
size k with the property (i, j) ∈ E for all distinct pairs i, j ∈ C.

Finding k-cliques is a very natural application of RRR with rank constrained sym-
metric matrices. Let c be the indicator variable for the k-clique:

∀i ∈ V : ci =

{
1, i ∈ C
0, i /∈ C.

Define a symmetric rank-1 matrix, as usual, by Xij = cicj . We encode the graph
using the symmetric matrix H defined by

∀i, j ∈ V : Hij =

{
1, (i, j) ∈ E
0, (i, j) /∈ E.

With symmetric matrices X as the search variable, one of the RRR constraints, A, is
that X is semi-positive definite and rank 1. The other constraint, B, is the set

TrX = k

TrXH = k(k − 1)

Xij ∈ {0, 1}, ∀i, j ∈ V.

The third property makes computing the projection PB very easy. For example, in
order to satisfy the first condition as well, we simply find the k largest elements on
the diagonal of X , set them to 1, and the remainder to zero. A similarly simple
operation (for you to work out) applies to the off-diagonal elements.

Try out your clique finder on the 125-vertex benchmark instance C125.9.clq lo-
cated in the data directory of the github site. Ignore the lines in the header and go
directly to the listing of the 6963 edges: e 2 1, e 3 1, ... . Start with k = 25
and see how much you can increase k before you stop finding solutions. List the k
vertices of the largest clique you find.

Ramsey numbers

Ramsey numbers can be thought of as generalizing the pigeonhole principle. Sup-
pose you have complete graph on n vertices and color the edges with three colors.
If n ≥ 17 it turns out that no matter how you color the edges there will always be
a mono-chromatic triangle in the graph (all three edges have the same color). Con-
versely, when n < 17 there is a way to color the edges so monochromatic triangles
are absent. In this problem you will use RRR to find such edge colorings.
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Because there is a constraint, on each triangle, among three — not two — primary
variables (edge colors), the linearizing trick of using symmetric matrices cannot be
used. You should therefore try one of the two other standard formulations: divide-
and-concur or linear relations. Use permutation symmetric, color-to-vector encod-
ings as described in the queens graph problem.

For divide-and-concur you would use color-vector variables with two indices vet,
where e is an edge of the complete graph and t is one of the triangles that contains
edge e. Interpret vet as, “the color of edge e in the world of triangle t ”. The concur
projection will be applied to all the vet’s with e fixed as t ranges over all the triangles
that include e. The divide projection is applied to only three color variables at a time:
the three vet’s for each t. The job of this projection is just to ensure that no triangle
is monochromatic.

If instead you use linear relations, you would have a color vector ve on each edge
and define, linearly, triangle variables wt = vt(1) + vt(2) + vt(3), where t(1), t(2),
t(3) are the three edges of triangle t. All these linear equations are one of the RRR
constraints. For the other RRR constraint you would constrain each ve to be one of
your three permutation-symmetric color codes, and some other constraint on the wt’s
to keep triangles non-monochromatic.

The difficulty of finding colorings grows with n, of course, and reaching n = 16
might be a challenge (but it has been done).

Spin glass ground states

Use the rank-1 constrained symmetric matrix method demonstrated in lecture to find
low energy states for a 40-spin Ising model. The energy of the model is defined by

E =
1

2

∑
i,j

siHijsj,

and you can find the 40 × 40 matrix H of couplings, spinglassH, in the data
directory of the github site. Give the lowest energy you find along with the list of
spins with value +1, using the convention s1 = +1.
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Survey questions

1. Which programming language do you prefer for in-class demonstrations?

2. Which programming language are you most motivated to learn?

3. List applications that you would have liked to have seen demonstrated.

4. What would be a good name for the proposed python package?


