Lorentz invariance of the wave equation

We need to compute the partial derivatives in terms of partial derivatives with respect to the primed
coordinates.
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The second derivatives are then

62_( d 6)( 0 6)_202 02 02+262
ez~ \Nugy ~ Mgy J\Yuge = Wagyr) = Vulge2 ™ “ovax ~ “oxar T ax?

92 ( Yull 0 6)( Yull 0 6) 2<u2 92 u 92 u 02 62)
Yu

—— ————t
x2 2 9t’ RE ox’ 2 9t’ T ox’ viat'2  v2ot'ox’ v20x'dt’  0Ox'?
2 2
We can now write 2= = 12 22 a5 follows
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Dividing both sides by y;2 and distributing the v2 on the right, we have
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Cancelling out the common mixed derivatives terms and grouping derivatives with respect to t’ on
the left and derivatives with resect to x’ on the right, we have
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Where on the right we have factored out a v2. Dividing out the common factor (1 - %), we have
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Symmetries of the Schrodinger equation

1. Usingthe chainrule, we have% = aa—tt% = at, This transforms the Schrodinger equation
into
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Which is not the same as the original equation, due to the negative sign on the left.
2. Squaring —i we get (—i)? = (—=1)%i? = i? = -1




3.

In both cases multiplying by i corresponds to rotating the vector by 90 degrees.
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4. Conjugation transforms ih to —ih, and time reversal transforms —to — — as we saw in part

a at’
1. Together, we then have ih —— lp( LN - (- h)( %) lh — The Schrodinger equation
then becomes
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Which is the same as the untransformed Schrodinger equation.
We lose amplitude translation symmetry, since writing the equation intermsof ¥/ = ¥ —
Y, gives
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Which has an extra term U (x)¥, compared to the original Schrodinger equation.
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Additionally, we lose translation symmetry. — 9 = a2
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where x" = x — x,, sothe
Schrédinger equation now becomes
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Which is not the same as the original Schrodinger equation.



Propagating electric and magnetic fields in a co-ax

1.

The divergence theorem states that fVV-FdV =
fSF -dA, where V is a given volume and S is the

surface area enclosing thatvolume, and F is avector

field, which in our case is E or B. For our volume, we }7
pick a wedge-shaped volume such that the inner
surface is section of a cylinder of radius r; and
subtending an angle ¢, and the outer surface is a -
section of a cylinder of radius 1, and subtending the
angle ¢. The figure on the right shows a cross
section of this volume. Let the length of the volume
be . The electric field, being in the radial direction,
runs along the sides and ends of this volume. |
Therefore, E -dA = 0 for every area element on

these surfaces. This means [, V- E dV = fsiE -dA + fSOE - dA, where S; and S, are the inner

and outer surfaces of the volume. Substituting in the expression for E, we have
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In cylindrical coordinates, the area elements on these surfaces are r; dfdz and r, df8dz, and
the direction of the surface vector is outward from the volume, which means it is —7 for the
inner surface and # for the outer surface. This then gives
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In summary, we have, fVV -E dV = 0, which impliesV - E = 0.

For the magnetic field, since itis in the Ef) direction, it runs along the inner and outer surface,

so B - dA = 0 for every area element on those surfaces. It also runs along the ends of the

volume, so the same applies there. Thismeans [, V-BdV = [, B-dA + fsz B - dA where S,
1

and S, are the sides of the volume. Substituting in the expression for B, we have
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In cylindrical coordinates, the area elements along the side surfaces have magnitude dr dz,
and the direction of the surface vector is outward from the volume, so for one side itis (7)
and for the other side it is —¢p. With this, we have
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In summary, we have, fVV - B dV = 0,whichimpliesV - B = 0.




2. Firstwe compute V X E. E only has an r component, which means Ey = E, = 0. With this,
the curl expression greatly simplifies to
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The second term also is zero, since E does not depend on ¢. Substituting in E,. = f(i't), we
have
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For the case of B, B, = B, = 0. In this case, the curl expression becomes
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After substituting in B¢ = @We find that rB¢ = g(z,t), whichis independent of r, so the

second term is also zero. Consequently,

3. Thetwo curlequationsare VX E = —BandV X B = C%E'. Substituting in the expressions for

E, B, and the curls from part 3, we have
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Which can be simplified to
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Taking the derivative of the first equation with respect to z, we have
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And taking the derivative of the second equation with respect to t we have
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Using the fact that, as far as us physicists are concerned, 2t9s .~ os0r WECAN

substitute the second equation into the first equation, and find
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This is the wave equation for waves propagating along z with speed \/% We could have

instead chosen to substitute in for f and found a second order partial differential equation
for g, and we would have found the same wave equation. Since E, B are proportionalto f, g,
we have that E and B are waves propagating along z.

4. Inside the inner conductor, since the charge is a surface charge, a Gaussian surface will
enclose no charge, and by Gauss’s law the electric field will then be zero. Similarly, an
Amperian loop inside the conductor will enclose no current, since the currentis at the
surface, and therefore the magnetic field will be zero. Inside the outer conductor, a
Gaussian surface will enclose the charge from the inner conductor, as well as the surface
charge from the inner surface of the outer conductor. These two charges are equal and
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opposite, so the net enclosed charge will be zero, and so will the electric field. In the same
way, an Amperian loop will enclose no net current, since the current of the inner conductor
will cancel out the current at the inner surface of the outer conductor, and therefore the

magnetic field will be zero. For a surface charge, we have fSE -dA = Eifsa dA, which for our
0
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case means | nfoz adzdp = — [; ”foz 04(z, t)adzd¢p, where g, is the surface charge
0

density at the surface withr = a.

Simplifying, we have 27rf f(z,t)dz =
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For the magnetic field we have [, B - dl = y, |, jdl, which in our case means f;"@ad(p =

Uo fOana (z,t)adg, where j, is the surface current at the surface with r = a. Simplifying we
get2mg(z,t) = py2maj,(z t), which means
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Repeating the same steps with r = b we find
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We note that up to factors of ke, and o respectively, the charge density and current density
0

are simply the values of the electric and magnetic fields at the conductors’ surfaces, and
therefore amount to the boundary conditions on the electromagnetic fields.
The amount of current flowing out of a strip of Az is given by the total amount of current

flowing out on one side, minus the current flowing in on the other side. That is, the total
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current flowing outis j(z + Az, t) — j(z,t) = ~ 52— mer 02 , where 1,
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have Aza—iz —Az a;i ),é= —a—i. That is, the current flowing out of the strip is equal to

the rate at which the charge decreases, so charge is conserved.

Since a(z,t) is a pulse moving in the positive z direction, we have o(z,t) = h (z — \/i_ t),
f( t)

where h(z) is some pulse-Llike function. Since a(z,t) = ke, ——, we have f(z,t) =
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which means g(z,t) = o _p (z — \/%t), and B = 9t _ _1 h (z — \/%t) That is, the
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fields are scaled versions of the same pulse.




