
Lorentz invariance of the wave equation 

We need to compute the partial derivatives in terms of partial derivatives with respect to the primed 
coordinates. 

𝜕

𝜕𝑡
=

𝜕𝑡′

𝜕𝑡

𝜕

𝜕𝑡′
+

𝜕𝑥′

𝜕𝑡

𝜕

𝜕𝑥′
= 𝛾𝑢

𝜕

𝜕𝑡′
− 𝑢𝛾𝑢

𝜕

𝜕𝑥′
 

 
𝜕

𝜕𝑥
=

𝜕𝑡′

𝜕𝑥

𝜕

𝜕𝑡′
+

𝜕𝑥′

𝜕𝑥

𝜕

𝜕𝑥′
=  −

𝛾𝑢𝑢

𝑣2

𝜕

𝜕𝑡′
+ 𝛾𝑢

𝜕

𝜕𝑥′
 

The second derivatives are then 

𝜕2

𝜕𝑡2
= (𝛾𝑢

𝜕

𝜕𝑡′
− 𝑢𝛾𝑢

𝜕

𝜕𝑥′
) (𝛾𝑢

𝜕

𝜕𝑡′
− 𝑢𝛾𝑢

𝜕

𝜕𝑥′
) = 𝛾𝑢

2 (
𝜕2

𝜕𝑡′2 − 𝑢
𝜕2

𝜕𝑡′𝜕𝑥′
− 𝑢

𝜕2

𝜕𝑥′𝜕𝑡′
+ 𝑢2

𝜕2

𝜕𝑥′2) 

𝜕2

𝜕𝑥2
= (−

𝛾𝑢𝑢

𝑣2

𝜕

𝜕𝑡′
+ 𝛾𝑢

𝜕

𝜕𝑥′
) (−

𝛾𝑢𝑢

𝑣2

𝜕

𝜕𝑡′
+ 𝛾𝑢

𝜕

𝜕𝑥′
) = 𝛾𝑢

2  (
𝑢2

𝑣4

𝜕2

𝜕𝑡′2
−

𝑢

𝑣2

𝜕2

𝜕𝑡′𝜕𝑥′
−

𝑢

𝑣2

𝜕2

𝜕𝑥′𝜕𝑡′
+

𝜕2

𝜕𝑥′2) 

We can now write 𝜕
2Ψ

𝜕𝑡2 = 𝑣2 𝜕2Ψ

𝜕𝑥2  as follows 

𝛾𝑢
2 (

𝜕2Ψ

𝜕𝑡′2 − 𝑢
𝜕2Ψ

𝜕𝑡′𝜕𝑥′
− 𝑢

𝜕2Ψ

𝜕𝑥′𝜕𝑡′
+ 𝑢2

𝜕2Ψ

𝜕𝑥′2) = 𝛾𝑢
2𝑣2 (

𝑢2

𝑣4

𝜕2Ψ

𝜕𝑡′2
−

𝑢

𝑣2

𝜕2Ψ

𝜕𝑡′𝜕𝑥′
−

𝑢

𝑣2

𝜕2Ψ

𝜕𝑥′𝜕𝑡′
+

𝜕2Ψ

𝜕𝑥′2) 

Dividing both sides by 𝛾𝑢
2 and distributing the 𝑣2 on the right, we have 

𝜕2Ψ

𝜕𝑡′2 − 𝑢
𝜕2Ψ

𝜕𝑡′𝜕𝑥′
− 𝑢

𝜕2Ψ

𝜕𝑥′𝜕𝑡′
+ 𝑢2

𝜕2Ψ

𝜕𝑥′2
=  

𝑢2

𝑣2

𝜕2Ψ

𝜕𝑡′2
− 𝑢

𝜕2Ψ

𝜕𝑡′𝜕𝑥′
− 𝑢

𝜕2Ψ

𝜕𝑥′𝜕𝑡′
+ 𝑣2

𝜕2Ψ

𝜕𝑥′2
 

Cancelling out the common mixed derivatives terms and grouping derivatives with respect to 𝑡′ on 
the left and derivatives with resect to 𝑥′ on the right, we have 

(1 −
𝑢2

𝑣2)
𝜕2Ψ

𝜕𝑡′2
= 𝑣2  (1 −

𝑢2

𝑣2)
𝜕2Ψ

𝜕𝑥′2
, 

Where on the right we have factored out a 𝑣2. Dividing out the common factor (1 −
𝑢2

𝑣2), we have 

𝜕2Ψ

𝜕𝑡′2
= 𝑣2  

𝜕2Ψ

𝜕𝑥′2
. 

Symmetries of the Schrödinger equation 

1. Using the chain rule, we have 𝜕

𝜕𝑡
=

𝜕𝑡′

𝜕𝑡

𝜕

𝜕𝑡′ =  −
𝜕

𝜕𝑡′. This transforms the Schrödinger equation 

into 

−𝑖ℏ
𝜕Ψ

𝜕𝑡′
= −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
, 

Which is not the same as the original equation, due to the negative sign on the left. 
2. Squaring −𝑖 we get (−𝑖)2 = (−1)2𝑖2 = 𝑖2 = −1 

 



3. In both cases multiplying by 𝑖 corresponds to rotating the vector by 90 degrees. 

 

4. Conjugation transforms 𝑖ℏ to −𝑖ℏ, and time reversal transforms 𝜕

𝜕𝑡
 to − 𝜕

𝜕𝑡′ as we saw in part 

1. Together, we then have 𝑖ℏ 𝜕Ψ(x,t)

𝜕𝑡
→ (−𝑖ℏ) (−

𝜕Ψ′(𝑥,𝑡′)

𝜕𝑡′ ) = 𝑖ℏ
𝜕Ψ′

𝜕𝑡′ . The Schrödinger equation 

then becomes 

𝑖ℏ
𝜕Ψ′

𝜕𝑡′
=  −

ℏ2

2𝑚

𝜕2Ψ′

𝜕𝑥2
, 

Which is the same as the untransformed Schrödinger equation. 
5. We lose amplitude translation symmetry, since writing the equation in terms of Ψ′ = Ψ −

Ψ0 gives 

𝑖ℏ
𝜕Ψ

𝜕𝑡
=  −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥2
+ 𝑈(𝑥)Ψ 

  𝑖ℏ
𝜕(Ψ′ + Ψ0)

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2(Ψ′ + Ψ0)

𝜕𝑥2
+ 𝑈(𝑥)(Ψ′ + Ψ0) 

𝑖ℏ
𝜕Ψ′

𝜕𝑡
= −

ℏ2

2𝑚

𝜕2Ψ′

𝜕𝑥2
+ 𝑈(𝑥)Ψ′ + 𝑈(𝑥)Ψ0 

Which has an extra term 𝑈(𝑥)Ψ0 compared to the original Schrödinger equation. 

Additionally, we lose translation symmetry. 𝜕
2Ψ

𝜕𝑥2 =
𝜕2Ψ

𝜕𝑥′2, where 𝑥′ = 𝑥 − 𝑥0,  so the 

Schrödinger equation now becomes 

𝑖ℏ
𝜕Ψ

𝜕𝑡
=  −

ℏ2

2𝑚

𝜕2Ψ

𝜕𝑥′2 + 𝑈(𝑥′ + 𝑥0)Ψ 

Which is not the same as the original Schrödinger equation. 
 
 
 
 
 
 
 
 
 
 



Propagating electric and magnetic fields in a co-ax 

1. The divergence theorem states that ∫ ∇ ⋅ 𝑭 𝑑𝑉
𝑉

=

∫ 𝑭 ⋅ 𝑑𝑨
𝑆

, where 𝑉 is a given volume and 𝑆 is the 
surface area enclosing that volume, and 𝑭 is a vector 
field, which in our case is 𝑬 or 𝑩. For our volume, we 
pick a wedge-shaped volume such that the inner 
surface is section of a cylinder of radius 𝑟𝑖 and 
subtending an angle 𝜙, and the outer surface is a 
section of a cylinder of radius 𝑟𝑜 and subtending the 
angle 𝜙. The figure on the right shows a cross 
section of this volume. Let the length of the volume 
be 𝑙. The electric field, being in the radial direction, 
runs along the sides and ends of this volume. 
Therefore, 𝑬 ⋅ 𝑑𝑨 = 0 for every area element on 
these surfaces. This means∫ ∇ ⋅ 𝑬 𝑑𝑉

𝑉
= ∫ 𝑬 ⋅ 𝑑𝑨

𝑆𝑖
+ ∫ 𝑬 ⋅ 𝑑𝑨

𝑆𝑜
, where 𝑆𝑖 and 𝑆𝑜 are the inner 

and outer surfaces of the volume. Substituting in the expression for 𝐸, we have 

∫ ∇ ⋅ 𝑬 𝑑𝑉
𝑉

=  ∫
𝑓(𝑧, 𝑡)

𝑟𝑖
�̂� ⋅ 𝑑𝑨

𝑆𝑖

+ ∫
𝑓(𝑧, 𝑡)

𝑟𝑜
�̂� ⋅ 𝑑𝑨

𝑆𝑜

 

In cylindrical coordinates, the area elements on these surfaces are 𝑟𝑖 𝑑𝜃𝑑𝑧 and 𝑟𝑜 𝑑𝜃𝑑𝑧, and 
the direction of the surface vector is outward from the volume, which means it is −�̂� for the 
inner surface and �̂� for the outer surface. This then gives 

∫ ∇ ⋅ 𝑬 𝑑𝑉
𝑉

=  − ∫ ∫
𝑓(𝑧, 𝑡)

𝑟𝑖
𝑟𝑖𝑑𝜃𝑑𝑧

𝜙

0

𝑙

0

+ ∫ ∫
𝑓(𝑧, 𝑡)

𝑟𝑜
𝑟𝑜𝑑𝜃𝑑𝑧

𝜙

0

𝑙

0

= −𝜙 ∫ 𝑓(𝑧, 𝑡)𝑑𝑧
𝑙

0

+ 𝜙 ∫ 𝑓(𝑧, 𝑡)𝑑𝑧
𝑙

0

= 0 

In summary, we have, ∫ ∇ ⋅ 𝑬 𝑑𝑉
𝑉

= 0, which implies ∇ ⋅ 𝑬 = 0. 
 
For the magnetic field, since it is in the �̂� direction, it runs along the inner and outer surface, 
so 𝑩 ⋅ 𝑑𝑨 = 0 for every area element on those surfaces. It also runs along the ends of the 
volume, so the same applies there. This means ∫ ∇ ⋅ 𝑩 𝑑𝑉

𝑉
= ∫ 𝑩 ⋅ 𝑑𝑨

𝑆1
+ ∫ 𝑩 ⋅ 𝑑𝑨

𝑆2
 where 𝑆1 

and 𝑆2 are the sides of the volume. Substituting in the expression for 𝑩, we have 

∫ ∇ ⋅ 𝑩 𝑑𝑉
𝑉

=  ∫
𝑔(𝑧, 𝑡)

𝑟
�̂� ⋅ 𝑑𝑨

𝑆1

+ ∫
𝑔(𝑧, 𝑡)

𝑟
�̂� ⋅ 𝑑𝑨

𝑆2

 

 
In cylindrical coordinates, the area elements along the side surfaces have magnitude 𝑑𝑟 𝑑𝑧, 
and the direction of the surface vector is outward from the volume, so for one side it is �̂� 
and for the other side it is −�̂�. With this, we have 

∫ ∇ ⋅ 𝑩 𝑑𝑉
𝑉

= ∫ ∫
𝑔(𝑧, 𝑡)

𝑟

𝑙

0

𝑟2

𝑟1

𝑑𝑟𝑑𝑧 − ∫ ∫
𝑔(𝑧, 𝑡)

𝑟

𝑙

0

𝑟2

𝑟1

𝑑𝑟𝑑𝑧 = 0. 

In summary, we have, ∫ ∇ ⋅ 𝑩 𝑑𝑉
𝑉

= 0, which implies ∇ ⋅ 𝑩 = 0. 



2. First we compute ∇ × 𝑬. 𝑬 only has an 𝑟 component, which means 𝐸𝜙 = 𝐸𝑧 = 0. With this, 
the curl expression greatly simplifies to 

∇ × 𝑬 =
𝜕𝐸𝑟

𝜕𝑧
�̂� −

1

𝑟

𝜕𝐸𝑟

𝜕𝜙
�̂�. 

The second term also is zero, since 𝑬 does not depend on 𝜙. Substituting in 𝐸𝑟 =
𝑓(𝑧,𝑡)

𝑟
, we 

have 

∇ × 𝑬 =
1

𝑟

𝜕𝑓(𝑧, 𝑡)

𝜕𝑧
 �̂�. 

For the case of 𝑩, 𝐵𝑟 = 𝐵𝑧 = 0. In this case, the curl expression becomes 

∇ × 𝑩 =  −
𝜕𝐵𝜙

𝜕𝑧
�̂� +

1

𝑟

𝜕(𝑟𝐵𝜙)

𝜕𝑟
�̂�. 

After substituting in 𝐵𝜙 =
𝑔(𝑧,𝑡)

𝑟
 we find that 𝑟𝐵𝜙 = 𝑔(𝑧, 𝑡), which is independent of 𝑟, so the 

second term is also zero. Consequently, 

∇ × 𝑩 = −
1

𝑟

𝜕𝑔(𝑧, 𝑡)

𝜕𝑧
�̂�. 

 
3. The two curl equations are ∇ × 𝑬 = −�̇� and ∇ × 𝑩 =

𝜅

𝑐2 �̇�. Substituting in the expressions for 

𝑬, 𝑩, and the curls from part 3, we have 
1

𝑟

𝜕𝑓(𝑧, 𝑡)

𝜕𝑧
 �̂� = −

1

𝑟

𝜕𝑔(𝑧, 𝑡)

𝜕𝑡
�̂�,

1

𝑟

𝜕𝑔(𝑧, 𝑡)

𝜕𝑧
�̂� = −

𝜅

𝑐2

1

𝑟

𝜕𝑓(𝑧, 𝑡)

𝜕𝑡
�̂� 

Which can be simplified to 
𝜕𝑓(𝑧, 𝑡)

𝜕𝑧
= −

𝜕𝑔(𝑧, 𝑡)

𝜕𝑡
,
𝜕𝑔(𝑧, 𝑡)

𝜕𝑧
= −

𝜅

𝑐2

𝜕𝑓(𝑧, 𝑡)

𝜕𝑡
. 

Taking the derivative of the first equation with respect to 𝑧, we have 
𝜕2𝑓(𝑧, 𝑡)

𝜕𝑧2
= −

𝜕2𝑔(𝑧, 𝑡)

𝜕𝑧𝜕𝑡
 

And taking the derivative of the second equation with respect to 𝑡 we have 
𝜕2𝑔(𝑧, 𝑡)

𝜕𝑡𝜕𝑧
= −

𝜅

𝑐2

𝜕2𝑓(𝑧, 𝑡)

𝜕𝑡2
. 

Using the fact that, as far as us physicists are concerned, 𝜕
2𝑔(𝑧,𝑡)

𝜕𝑡𝜕𝑧
=

𝜕2𝑔(𝑧,𝑡)

𝜕𝑧𝜕𝑡
, we can 

substitute the second equation into the first equation, and find 
𝜕2𝑓(𝑧, 𝑡)

𝜕𝑧2
=  

𝜅

𝑐2

𝜕2𝑓(𝑧, 𝑡)

𝜕𝑡2
. 

This is the wave equation for waves propagating along 𝑧 with speed 𝑐

√𝜅
. We could have 

instead chosen to substitute in for 𝑓 and found a second order partial differential equation 
for 𝑔, and we would have found the same wave equation. Since 𝐸, 𝐵 are proportional to 𝑓, 𝑔, 
we have that 𝐸 and 𝐵 are waves propagating along 𝑧. 

4. Inside the inner conductor, since the charge is a surface charge, a Gaussian surface will 
enclose no charge, and by Gauss’s law the electric field will then be zero. Similarly, an 
Amperian loop inside the conductor will enclose no current, since the current is at the 
surface, and therefore the magnetic field will be zero. Inside the outer conductor, a 
Gaussian surface will enclose the charge from the inner conductor, as well as the surface 
charge from the inner surface of the outer conductor. These two charges are equal and 



opposite, so the net enclosed charge will be zero, and so will the electric field. In the same 
way, an Amperian loop will enclose no net current, since the current of the inner conductor 
will cancel out the current at the inner surface of the outer conductor, and therefore the 

magnetic field will be zero. For a surface charge, we have ∫ 𝑬 ⋅ 𝑑𝑨
𝑆

=
1

𝜖0
∫ 𝜎

𝑠
𝑑𝐴, which for our 

case means ∫ ∫
𝑓(𝑧,𝑡)

𝑎
𝑎𝑑𝑧

𝑧

0
𝑑𝜙

2𝜋

0
=

1

𝜅𝜖0
∫ ∫ 𝜎𝑎(𝑧, 𝑡)𝑎𝑑𝑧𝑑𝜙

𝑧

0

2𝜋

0
, where 𝜎𝑎 is the surface charge 

density at the surface with 𝑟 = 𝑎. 

Simplifying, we have 2𝜋 ∫ 𝑓(𝑧, 𝑡)𝑑𝑧
𝑧

0
=

2𝜋𝑎

𝜅𝜖0
∫ 𝜎𝑎(𝑧, 𝑡)𝑑𝑧

𝑧

0
, which implies 

𝜎𝑎(𝑧, 𝑡) =
𝜅𝜖0

𝑎
𝑓(𝑧, 𝑡). 

For the magnetic field we have ∫ 𝑩 ⋅ 𝑑𝒍
𝑙

= 𝜇0 ∫ 𝑗𝑑𝑙
𝑙

, which in our case means ∫
𝑔(𝑧,𝑡)

𝑎
𝑎𝑑𝜙

2𝜋

0
=

𝜇0 ∫ 𝑗𝑎(𝑧, 𝑡)𝑎𝑑𝜙
2𝜋

0
, where 𝑗𝑎 is the surface current at the surface with 𝑟 = 𝑎. Simplifying we 

get 2𝜋𝑔(𝑧, 𝑡) =   𝜇02𝜋𝑎𝑗𝑎(𝑧, 𝑡), which means 

𝑗𝑎(𝑧, 𝑡) =
𝑔(𝑧, 𝑡)

𝜇0𝑎
. 

Repeating the same steps with 𝑟 = 𝑏 we find 

𝜎𝑏(𝑧, 𝑡) =
𝜅𝜖0

𝑏
𝑓(𝑧, 𝑡), 𝑗𝑏(𝑧, 𝑡) =

𝑔(𝑧, 𝑡)

𝜇0𝑏
. 

We note that up to factors of 𝜅𝜖0 and 1

𝜇0
 respectively, the charge density and current density 

are simply the values of the electric and magnetic fields at the conductors’ surfaces, and 
therefore amount to the boundary conditions on the electromagnetic fields. 
The amount of current flowing out of a strip of Δ𝑧 is given by the total amount of current 
flowing out on one side, minus the current flowing in on the other side. That is, the total 

current flowing out is 𝑗(𝑧 + Δ𝑧, 𝑡) − 𝑗(𝑧, 𝑡) = Δ𝑧
𝑗(𝑧+Δ𝑧,𝑡)−𝑗(𝑧,𝑡)

Δ𝑧
≈ Δ𝑧

𝜕𝑗

𝜕𝑧
=

Δ𝑧

𝜇0𝑟0

𝜕𝑔(𝑧,𝑡)

𝜕𝑧
, where 𝑟0 

can be either 𝑎 or 𝑏. In part 3 we say 𝜕𝑔(𝑧,𝑡)

𝜕𝑧
= −

𝜅

𝑐2

𝜕𝑓(𝑧,𝑡)

𝜕𝑡
, so Δ𝑧

𝜇0𝑟0

𝜕𝑔(𝑧,𝑡)

𝜕𝑧
=  −

Δ𝑧𝜅

𝜇0𝑐2

𝜕𝑓(𝑧,𝑡)/𝑟0

𝜕𝑡
. But 

we know 𝜎(𝑧, 𝑡) = 𝜅𝜖0
𝑓(𝑧,𝑡)

𝑟𝑜
, so − Δ𝑧

𝜇0𝑐2

𝜕

𝜕𝑡

𝑓(𝑧,𝑡)

𝑟0
  =  −

Δ𝑧𝜅

𝜅𝜇0𝜖0𝑐2

𝜕𝜎(𝑧,𝑡)

𝜕𝑡
. Recalling 1

𝜖0𝜇0
= 𝑐2, we 

have Δ𝑧
𝜕𝑗

𝜕𝑧
=  −Δ𝑧

𝜕𝜎(𝑧,𝑡)

𝜕𝑡
,

𝜕𝑗

𝜕𝑧
=  −

𝜕𝜎

𝜕𝑡
. That is, the current flowing out of the strip is equal to 

the rate at which the charge decreases, so charge is conserved. 

5. Since 𝜎(𝑧, 𝑡) is a pulse moving in the positive 𝑧 direction, we have 𝜎(𝑧, 𝑡) = ℎ (𝑧 −
𝑐

√𝜅
𝑡), 

where ℎ(𝑧) is some pulse-like function. Since 𝜎(𝑧, 𝑡) = 𝜅𝜖0
𝑓(𝑧,𝑡)

𝑟𝑜
, we have 𝑓(𝑧, 𝑡) =

𝑟0

𝜅𝜖0
𝜎(𝑧, 𝑡) =  

𝑟0

𝜅𝜖0
ℎ (𝑧 −

𝑐

√𝜅
𝑡). This means the field is 𝐸 =

𝑓(𝑧,𝑡)

𝑟0
=

1

𝜅𝜖0
 ℎ (𝑧 −

𝑐

√𝜅
𝑡),  We also 

know 𝜕𝑔(𝑧,𝑡)

𝜕𝑧
= −

𝜅

𝑐2

𝜕𝑓(𝑧,𝑡)

𝜕𝑡
, so 𝜕𝑔(𝑧,𝑡)

𝜕𝑧
=  −

𝑟0

𝑐2𝜖0

𝜕ℎ(𝑧−
𝑐

√𝜅
𝑡)

𝜕𝑡
=

𝑟0

𝑐√𝜅𝜖0
ℎ′ (𝑧 −

𝑐

√𝜅
𝑡) =

𝑟0

𝑐√𝜅𝜖0

𝜕ℎ(𝑧−
𝑐

√𝜅
𝑡)

𝜕𝑧
, 



which means 𝑔(𝑧, 𝑡) =
𝑟0

𝑐√𝜅𝜖0
ℎ (𝑧 −

𝑐

√𝜅
𝑡), and 𝐵 =

𝑔(𝑧,𝑡)

𝑟0
=

1

𝑐√𝜅𝜖0
ℎ (𝑧 −

𝑐

√𝜅
𝑡). That is, the 

fields are scaled versions of the same pulse.  


