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Homework 3

Due date: Wednesday, February 14

Lorentz invariance of the wave equation

Transform the wave equation in the “unprimed frame”,

∂2Ψ

∂t2
= v2

∂2Ψ

∂x2

to the “primed frame” with coordinates

x′ = γu (x− u t)
t′ = γu

(
t− (u/v2)x

)
,

where
γu =

1√
1− u2/v2

,

and show that the form of the equation is unchanged. You should recognize the
coordinate transformation as a boost with velocity u in a world where the maximum
velocity is v.

Symmetries of the Schrödinger equation

The Schrödinger equation is a wave equation, but where the thing that’s waving,
written Ψ, is very mysterious:

i h̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
.

This is the Schrödinger equation that describes a particle of massmmoving in a one-
dimensional world, the x-axis. The constant h̄ is called “h-bar”. From the presence
of i, the square-root of−1, you probably guessed that Ψ is a complex-valued function
of x and t.

1. Show that the Schrödinger equation is not invariant under time reversal, that is,
when rewritten in terms of the variable, t′ = −t.

2. Recall that i is a made-up number with the property that its square equals −1.
Confirm that−1 times the made-up number would also have worked, as a num-
ber whose square equals −1.
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3. The complex number system has a symmetry operation called conjugation1.
Applying this operation just means going to the other choice of number whose
square equals −1. In concrete terms, you can think of it as replacing i with −i
in any expression involving complex numbers. Geometrically it means that re-
lationships among complex numbers, when represented graphically in the com-
plex plane, are preserved when the numbers are reflected across the real axis.
Demonstrate this by first rendering the complex numbers z = 1 + 2i and iz as
vectors in the usual complex plane where i is above the real axis. Now render
the same pair of complex numbers in the reflected complex plane where i is
below the real axis. What is the geometrical meaning of “multiply by i ” — in
both the standard complex plane and in the reflected complex plane?

4. Though the Schrödinger equation is not invariant under the naive time-reversal
transformation, it is invariant when Ψ is transformed as well:

Ψ′(x, t′) = Ψ∗(x,−t)

The conjugation symbol ∗ means replace all i’s with −i’s. For example, (1 +
2i)∗ = 1 − 2i. Show that you get invariance when time reversal is combined
with conjugation.

5. When there is a (real-valued) potential energy U(x) in the one-dimensional
world, the Schrödinger equation becomes

i h̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂x2
+ U(x)Ψ .

What symmetries go away when the last term is added?

Propagating electric and magnetic fields in a co-ax

Though the exercise of representing a co-ax cable as a chain of capacitors and in-
ductors was a nice example of model building — and also a review of the crazy
voltage rule for inductors! — there is a much more direct approach that features E
and B front and center. Start with the following vectorial forms of these fields, that
you might have guessed from the distribution of charges and currents, in the obvious
cylindrical coordinate system:

E =
f(z, t)

r
r̂

B =
g(z, t)

r
φ̂ .

1It’s fitting that the mathematical study of symmetries, called goup theory, got its start when Évariste
Galois thought to apply transformations to number systems, like the complex numbers.
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At this point f and g are just a pair of arbitrary functions of two arguments and you
need not worry about the applicable range of r.

1. Using small, suitably shaped Gaussian surfaces (which may be combined to
form arbitrary surfaces) show that ∇ · E = 0 and ∇ · B = 0. Thus two of
Maxwell’s equations are satisfied provided you are in a region of zero charge
density.

2. The computation of the curl is more complicated in the non-cartesian coordi-
nates. Use this general formula for the curl in cylindrical coordinates,

∇×V =

(
1

r

∂Vz
∂φ
− ∂Vφ

∂z

)
r̂ +

(
∂Vr
∂z
− ∂Vz

∂r

)
φ̂+

1

r

(
∂(rVφ)

∂r
− ∂Vr

∂φ

)
ẑ ,

to work out the other two Maxwell equations for the E and B above and with
the assumption that you are in a region with zero current density.

3. If you didn’t make any mistakes, the two curl equations should reduce to two
differential equations involving just the scalar functions f and g and the vari-
ables z and t. By taking derivatives of the two equations you can eliminate one
of the functions, say g, and end up with a second-order differential equation
involving just f . You have every right to suspect a conspiracy if your equation
looks very familiar!

4. Make contact with the co-ax by considering the preposterous proposition that
the E and B expressions apply only in the region between the two conductors,
and that E and B inside the conductors is exactly zero! Explain why this can
make sense if there is a surface charge density σ (charge/area) and surface
current density jẑ (charge/length× time) at the surfaces of the two conductors.
Relate σ(z, t), at r = a and r = b (as defined in lecture), to the function f , and
j(z, t), at r = a and r = b to the function g. Is charge conserved?
Hint: Use the integral forms of the two Maxwell equations with sources to
obtain σ and j. To check charge conservation, calculate the flow of charge into
and out-of a small band of surface (small ∆z).

5. Sketch a snapshot of E and B for the case of a pulse-like σ(z, t) moving toward
positive z with speed c/

√
κ.


