
Basic Training, Spring 2018 1

Assignment 3

Due date: Wednesday, March 14

Working with qubits

In this exercise you develop the computational machinery needed for reconstructing
a quantum state from a set of measurements, or “quantum state tomography”. The
measurement matrices you construct here will be the starting point for the actual
tomography in the next assignment.

Your quantum system is comprised of four qubits. One way to represent a general
state1 is as a 2 × 2 × 2 × 2 tensor x. For example, x[1, 2, 2, 1] is the amplitude that
qubits 1 and 4 are spin-up, and qubits 2 and 3 are spin-down.

The tensor representation is what you want to use when acting on a state with spin
operators. You will be using measurements that involve single qubits as well as pairs
of qubits, such as

σ1
x σ

3
y . (1)

These are the standard Pauli spin operators and the superscript tells you which qubit
is being acted upon. Write a program that acts on an arbitrary state (tensor) with
operators such as (1). Test your program by computing the 16× 16 matrix for (1) in
the standard basis. In basis state 1 all the elements of x are zero except x[1, 1, 1, 1],
which is 1. In the next basis states (2, 3, 4 ... ), the single 1-element is located at
x[1, 1, 1, 2], x[1, 1, 2, 1], x[1, 1, 2, 2], etc. The 16 × 16 matrix for (1) is zero except
for a single ±i in each row and column2. Here are the [row, col] indices of the +i
entries:

[1, 11] [2, 12] [5, 15] [6, 16] [9, 3] [10, 4] [13, 7] [14, 8].

The −i entries are uniquely determined from these by hermiticity of (1). Be sure
to write your code in such a way that you can construct matrices for all 6 × 3 × 3
operators of the form (1), i.e. all distinct pairs of spins and all combinations of Paulis.

1The more conventional symbol would be Ψ, but we’re keeping with the course convention of the-entity-
being-reconstructed-shall-be-called-x.

2Your matrix may differ by the exchange i↔ −i, which is just a matter of convention.



Basic Training, Spring 2018 2

Pizza for (up to) five

You’ve invited four people over for pizza, so the maximum number of people sharing
the pie is five. Your task is to divide the pizza into p pieces in advance, so that no
matter how many guests show up you will be able to combine the pieces in such a
way that everyone gets the same amount. The smallest p for which a solution exists
is p = 9.

Use RRR to find at least two different solutions. The unknown, as explained in
lecture, is a 3× 4× 5 tensor x on which we impose two constraints:

EQUIPARTITION: This is a system of linear equations:

∀i1 6= i2 :
∑
j,k

x[i1, j, k] =
∑
j,k

x[i2, j, k],

and similarly for the other two dimensions of the tensor. Use the simple algo-
rithm described in lecture to project to this constraint.

SPARSITY-p: Only p elements of x may be non-zero, and these must be positive.

In “small” applications of RRR, such as this one, there is a higher probability of
the dynamical system falling into an unproductive cycle. It is therefore likely that
you will have to make several runs (from random starts) in order to find two true
solutions. When you get convergence, verify the solution by rounding the nonzero
elements of x to candidate rational numbers. Hint: first multiply by LCM(3, 4, 5).

Latin squares by divide and concur

A latin square of order n is an n×n array of n symbols arranged so that each symbol
occurs exactly once in each row and column.

A nice way to represent a latin square is as an n× n× n tensor x with only 0 and 1
elements. Think of x as a “building”, where the 1’s on floor k give the locations of the
symbol k on that floor. Clearly on each floor we must have exactly a single 1 in each
(horizontal) row and (horizontal) column. But because the latin square has a unique
symbol in each array element, the building must also have a single 1 in each vertical
stack as well. Summarizing: the 0/1 tensor x must have exactly n2 1’s arranged so
that in each of the n2 horizontal rows, and each of the n2 horizontal columns, and in
each of the n2 vertical stacks, there is exactly a single 1.

Latin square completion, related to sudoku, is where g < n2 of the symbols are
given and you need to consistently fill in the rest — or prove this is impossible. This
is equivalent to being given the positions of g 1’s in the tensor x.

There are many ways of applying RRR to latin square completion. In this exercise
you will try one of the easiest implementations, called divide and concur. The idea



Basic Training, Spring 2018 3

is to work with a larger tensor y, of size 3× n× n× n. Think of y[1, · · · ], y[2, · · · ],
y[3, · · · ] as three copies of the tensor x on which we are free to impose independent
constraints, corresponding to the rows, columns, and vertical stacks in the “building”.
We still end up with just two meta-constraints for which there are easy projections in
the RRR scheme:

DIVIDE:

∀ i, j : y[1, i, j, k] is zero except at a single k where it equals 1
∀ j, k : y[2, i, j, k] is zero except at a single i where it equals 1
∀ k, i : y[3, i, j, k] is zero except at a single j where it equals 1.

CONCUR:
∀ i, j, k : y[1, i, j, k] = y[2, i, j, k] = y[3, i, j, k].

The positions of the g given symbols (for latin square completion) can be intro-
duced into either constraint with little overhead. In DIVIDE you would check
if the row/column/stack intersected with the 1 of a given symbol and make that
the choice. In CONCUR, in addition to the three copies being equal, the value
equals 1 when [i, j, k] is the location of a given symbol (optionally, set to 0 the
other elements on the intersecting row, column, stack). Pick one of these (or
both) and experiment to see which is better at finding solutions. Work with the
incomplete latin square in the data folder of the course github site.
This RRR implementation of the latin square problem happens to have a very
strong dependence on the time-step parameter β.


