Coupled Pendulums

1. The diagram on the right might be useful. The component of the force due to gravity perpendicular to the pendulum rod is $-m g \sin \left(\theta_{n}\right)$, and it's negative because it acts to decrease θ_{n} The torque due to gravity is then

$$
\tau_{n g}=-m g r \sin \left(\theta_{n}\right)
$$

2. In class it was shown that the torque on pendulum n due to the neighboring pendulums was $\tau_{n}=\kappa\left(\theta_{n-1}-2 \theta_{n}+\theta_{n+1}\right)$. The net torque on the nth pendulum is $\tau_{n, n e t}=-m g r \sin \left(\theta_{n}\right)+$
 $\kappa\left(\theta_{n-1}-2 \theta_{n}+\theta_{n+1}\right)$. Applying Newton's second law for torques, we have that the equations of motion are

$$
I \frac{d^{2} \theta_{n}}{d t^{2}}=-m g r \sin \left(\theta_{n}\right)+\kappa\left(\theta_{n-1}-2 \theta_{n}+\theta_{n+1}\right)
$$

Or equivalently,

$$
\frac{d^{2} \theta_{n}}{d t^{2}}=-\frac{m g r}{I} \sin \left(\theta_{n}\right)+\frac{\kappa}{I}\left(\theta_{n-1}-2 \theta_{n}+\theta_{n+1}\right)
$$

Where I is the moment of inertia, and is a function of m and r.
3. For the case when θ_{n} is small, we have that $\sin \left(\theta_{n}\right) \approx \theta_{n}$. In this case, the equation becomes

$$
\frac{d^{2} \theta_{n}}{d t^{2}}=-\frac{m g r}{I} \theta_{n}+\frac{\kappa}{I}\left(\theta_{n-1}-2 \theta_{n}+\theta_{n+1}\right) .
$$

4. As shown in class, the second term can be interpreted in terms of the second derivative with respect to position, and the equation becomes

$$
\frac{\partial^{2} \theta(t, x)}{\partial t^{2}}=-\frac{m g r}{I} \theta(t, x)+\frac{\kappa \Delta x^{2}}{I} \frac{\partial^{2} \theta(t, x)}{\partial x^{2}} .
$$

Co-tape ${ }^{\text {TM }}$

1. With the assumptions we are making (i.e. constant electric field, no edge effects) the tape and metal surfaces form a parallel plate capacitor. In such a capacitor, the field is given by $E=\frac{\sigma}{\kappa \epsilon_{0}}$, where σ is the charge per unit area. This is simply the sum of the fields of two planes of charge. Substituting in $\sigma=\frac{Q}{L w^{\prime}}$, where l and w are the length and width of the tape, we have $E=\frac{Q}{\kappa \epsilon_{0} L w}$. The potential is then $V=\int_{0}^{d} E(z) d z=\frac{Q d}{\kappa \epsilon_{0} L w}$. With this we have that the capacitance $C=\frac{Q}{V}=\frac{\kappa \epsilon_{0} l w}{d}$. Finally, the capacitance per unit length is

$$
\tilde{C}=\frac{\kappa \epsilon_{0} w}{d} .
$$

2. Ignoring the edge effects, we compute the magnetic field as the sum of the magnetic fields of two sheets of current. The current density $j=\frac{i}{w^{\prime}}$, the current per unit width. For an arbitrary width Δx, using Ampere's law, we have, $B_{\text {sheet }} 2 \Delta x=\mu_{0} j \Delta x=\frac{\mu_{0} i \Delta x}{w}$. The field
between the sheets is then $B=\frac{\mu_{0} i}{w}$. The flux is $\phi=\int_{0}^{d} \int_{0}^{l} B d y d z=\frac{\mu_{0} i l d}{w}$. The inductance is $L=\frac{\phi}{i}=\frac{\mu_{0} l d}{w}$. The inductance per unit length is then

$$
\tilde{L}=\frac{\mu_{0} d}{w} .
$$

3. The velocity of waves is

$$
v=\frac{1}{\sqrt{\tilde{L} \tilde{C}}}=\frac{1}{\sqrt{\frac{\kappa \epsilon_{0} w}{d} \frac{\mu_{0} d}{w}}}=\frac{1}{\sqrt{\kappa}} \frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}=\frac{c}{\sqrt{\kappa}} .
$$

