A different initial condition for torsional waves

1. Recall that $f(x) = \frac{1}{2}p(x) - \frac{1}{2\nu}\int_0^x q(x')dx'$ and $g(x) = \frac{1}{2}p(x) + \frac{1}{2\nu}\int_0^x q(x')dx'$. For our case, $p(x) = \theta(x, 0) = 0$, and $q(x) = \dot{\theta}(x, 0) = S(x) = \begin{cases} \alpha, |x| < x_0 \\ 0, |x| > x_0 \end{cases}$. With this, we have

$$f(x) = -g(x) = -\frac{1}{2\nu} \int_0^x S(x') dx' = \begin{cases} -\frac{\alpha}{2\nu} x, & |x| < x_0 \\ -\frac{\alpha}{2\nu} x_0, & x > x_0 \\ \frac{\alpha}{2\nu} x_0, & x < -x_0 \end{cases}$$

Sketching these gives

2. Combining the above two graphs, we see the red and the blue graphs will perfectly cancel out giving a flat line.

	f(x) + g(x)	
	$\frac{\alpha x_0}{2\nu}$	
-x0		
	$\frac{1}{2v}$	

3. At
$$t = -\frac{1}{2} \frac{x_0}{v}$$
, $\theta\left(x, -\frac{1}{2} \frac{x_0}{v}\right) = f\left(x + \frac{1}{2} x_0\right) - f\left(x - \frac{1}{2} x_0\right)$. Looking at $f(x)$, we see that

$$f\left(x + \frac{1}{2} x_0\right) = \begin{cases} -\frac{\alpha}{2v} \left(x + \frac{1}{2} x_0\right), & -\frac{3}{2} x_0 < x < \frac{1}{2} x_0 \\ & -\frac{\alpha}{2v} x_0, & x > \frac{1}{2} x_0 \\ & \frac{\alpha}{2v} x_0, & x < -\frac{3}{2} x_0 \end{cases}$$

$$-f\left(x - \frac{1}{2} x_0\right) = \begin{cases} \frac{\alpha}{2v} \left(x - \frac{1}{2} x_0\right), & -\frac{1}{2} x_0 < x < \frac{3}{2} x_0 \\ & \frac{\alpha}{2v} x_0, & x > \frac{3}{2} x_0 \\ & -\frac{\alpha}{2v} x_0, & x > \frac{3}{2} x_0 \\ & -\frac{\alpha}{2v} x_0, & x < -\frac{1}{2} x_0 \end{cases}$$

When $x < -\frac{3}{2}x_0$, the two functions cancel out. When $-\frac{3}{2}x_0 < x < -\frac{1}{2}x_0$, the two combine into a line with slope $-\frac{\alpha}{2v}$. When $-\frac{1}{2}x_0 < x < \frac{1}{2}x_0$, the two add to $-\frac{\alpha}{2v}x_0$. When $\frac{1}{2}x_0 < x < \frac{3}{2}x_0$, we get a line with slope $\frac{\alpha}{2v}$, and finally when $x > \frac{3}{2}x_0$, the two again cancel out. This is graphed below on the left.

At $t = \frac{1}{2} \frac{x_0}{v}$, $\theta\left(x, \frac{1}{2} \frac{x_0}{v}\right) = f\left(x - \frac{1}{2} x_0\right) - f\left(x + \frac{1}{2} x_0\right)$. Switching the order of the terms and factoring out a -1, we get $\theta\left(x, \frac{1}{2} \frac{x_0}{v}\right) = -\left(f\left(x + \frac{1}{2} x_0\right) - f\left(x - \frac{1}{2} x_0\right)\right) = -\theta\left(x, -\frac{1}{2} \frac{x_0}{v}\right)$. The graph will then be exactly the negative as before. This is graphed above on the right.

4. At $t = \frac{x_0}{v}$, $\theta\left(x, \frac{x_0}{v}\right) = f(x - x_0) - f(x + x_0)$. At this time we have

$$f(x - x_0) = \begin{cases} -\frac{\alpha}{2\nu}(x - x_0), & 0 < x < 2x_0 \\ -\frac{\alpha}{2\nu}x_0, & x > 2x_0 \\ \frac{\alpha}{2\nu}x_0, & x < 0 \end{cases}$$

$$-f(x+x_0) = \begin{cases} \frac{\alpha}{2\nu}(x+x_0), & -2x_0 < x < 0\\ \frac{\alpha}{2\nu}x_0, & x > 0\\ -\frac{\alpha}{2\nu}x_0, & x < -2x_0 \end{cases}$$

For $x < -2x_0$ and $x > 2x_0$, the two will cancel out. For $-2x_0 < x < 0$, the two form a line with slope $-\frac{\alpha}{2v}$, and for $0 < x < 2x_0$, they will form a line with slope $\frac{\alpha}{2v}$. At $t = -\frac{x_0}{v}$, we get the negative of this, following the same reasoning as in part 3. The two are graphed below.

5. At $t = \frac{3}{2} \frac{x_0}{v}$, $\theta\left(x, \frac{3}{2} \frac{x_0}{v}\right) = f\left(x - \frac{3}{2} x_0\right) - f\left(x + \frac{3}{2} x_0\right)$. At this time we have

$$f(x - x_0) = \begin{cases} -\frac{\alpha}{2\nu} \left(x - \frac{3}{2} x_0 \right), & \frac{1}{2} x_0 < x < \frac{5}{2} x_0 \\ -\frac{\alpha}{2\nu} x_0, & x > \frac{5}{2} x_0 \\ \frac{\alpha}{2\nu} x_0, & x < \frac{1}{2} x_0 \end{cases}$$
$$-f(x + x_0) = \begin{cases} \frac{\alpha}{2\nu} (x + x_0), & -\frac{5}{2} x_0 < x < -\frac{1}{2} x_0 \\ \frac{\alpha}{2\nu} x_0, & x > -\frac{1}{2} x_0 \\ -\frac{\alpha}{2\nu} x_0, & x < -\frac{5}{2} x_0 \end{cases}$$

For $x < -\frac{5}{2}x_0$ and $x > \frac{5}{2}x_0$, the two will cancel out. For $-\frac{5}{2}x_0 < x < -\frac{1}{2}x_0$, the two form a line with slope $-\frac{\alpha}{2v}$, and for $\frac{1}{2}x_0 < x < \frac{5}{2}x_0$, they will form a line with slope $\frac{\alpha}{2v}$. For $-\frac{1}{2}x_0 < x < \frac{1}{2}x_0$, the two add up to $-\frac{ax_0}{v}$. At $t = -\frac{3}{2}\frac{x_0}{v}$, we get the negative of all this, following the same reasoning as in part 3. The two cases are graphed below.

Transverse waves on a string

1. The little diagram on the right may be helpful in this case.

The force on the *n*th mass due to the (n + 1)mass is $T(x_{n+1})$ and directed along the line connecting the two masses. The *y* component of this force will then be

$$\begin{array}{c|c} \theta_l \\ \hline y_{n-1} \\ \Delta x \\ \end{array} \\ \begin{array}{c} y_n \\ \Delta x \\ \end{array} \\ \begin{array}{c} y_{n+1} \\ \Delta x \\ \end{array} \\ \end{array}$$

$$F_{n+1} = T(x_{n+1})\sin(\theta_r)$$

The force on the *n*th mass due to the (n - 1) mass is $-T(x_n)$ and it is directed along the line connecting those two masses. It's *y* component will be

$$F_n = -T(x_n)\sin(\theta_l),$$

where θ_l is measured counterclockwise from the horizontal between the two masses at x_n and x_{n-1} (this is so that the sign of the force will be correct in the cases when $y_n > y_{n-1}$ and $y_n < y_{n-1}$). The total vertical force is then

$$F_{n+1} + F_n = T(x_{n+1})\sin(\theta_r) - T(x_n)\sin(\theta_l)$$

Since we are assuming that the slope (and therefore the angle) is very small, we have that $\sin(\theta_r) \approx \frac{y_{n+1}-y_n}{\Delta x}$ and $\sin(\theta_l) \approx \frac{y_n-y_{n-1}}{\Delta x}$. Making this substitution, we have

$$F_{n+1} + F_n = T(x_{n+1}) \frac{y_{n+1} - y_n}{\Delta x} - T(x_n) \frac{y_n - y_{n-1}}{\Delta x}$$

2. Multiplying and dividing by Δx on the right side of the last equation in 1., we get

$$F_{n+1} + F_n = \Delta x \frac{T(x_{n+1}) \frac{y_{n+1} - y_n}{\Delta x} - T(x_n) \frac{y_n - y_{n-1}}{\Delta x}}{\Lambda x}.$$

Interpreting the differences in terms of derivatives, this becomes

$$F_{n+1} + F_n = \Delta x \frac{\partial}{\partial x} \left(T(x) \frac{\partial y}{\partial x} \right).$$

3. Newton's second law applied to mass m_n is $F_{n+1} + F_n = m_n \frac{\partial^2 y_n}{\partial t^2}$. Making this substitution, and recalling that $m_n = \mu(x_n)\Delta x$, and taking the limit where x is continuous as in part 2., we find

$$\mu(x)\Delta x \frac{\partial^2 y}{\partial t^2} = \Delta x \frac{\partial}{\partial x} \Big(T(x) \frac{\partial y}{\partial x} \Big).$$

Dividing both sides by Δx we finally have

$$\mu(x)\frac{\partial^2 y}{\partial t^2} = \frac{\partial}{\partial x} \Big(T(x)\frac{\partial y}{\partial x} \Big).$$

4. At each point along the chain, the tension in the chain must balance the weight of the chain below that point, so T(z) = weight of chain below $z = g \times (mass \ of \ chain \ below \ z)$. The mass of the chain below z is, in general, $\int_0^z \mu(z') dz'$. For our case $\mu(z) = \mu_0$, so the integral becomes $\int_0^z \mu_0 dz = \mu_0 z$, and the tension is

$$T(z) = g\mu_0 z$$

Substituting into the final equation in part 3. (with the change $x \rightarrow z$) we get

$$\mu_0 \frac{\partial^2 y}{\partial t^2} = \frac{\partial}{\partial z} \left(g \mu_0 z \frac{\partial y}{\partial z} \right).$$

We can pull the constants $\mu_0 g$ out of the derivative and divide both sides by μ_0 , giving

$$\frac{\partial^2 y}{\partial t^2} = g \frac{\partial}{\partial z} \left(z \frac{\partial y}{\partial z} \right).$$

Applying the product rule, we finally obtain

$$\frac{\partial^2 y}{\partial t^2} = g \frac{\partial y}{\partial z} + g z \frac{\partial^2 y}{\partial z^2}.$$

For the equation for torsion waves, the general solution was f(x - vt) + g(x + vt), for general functions f and g. We can now check if y = f(z - vt) + g(z + vt) solves the wave equation for a hanging chain. To avoid any confusion between the function g, and g the acceleration due

to gravity, I will call the acceleration due to gravity a_g . Plugging in if y = f(z - vt) + g(z + vt) to the left of the wave equation for the hanging chain, we get

$$\frac{\partial^2 y}{\partial t^2} = v^2 \big(f''(z - vt) + g''(z + vt) \big).$$

Plugging y = f(x - vt) + g(x + vt) into the right side, we get

$$a_g \frac{\partial y}{\partial z} + a_g z \frac{\partial^2 y}{\partial z^2} = a_g \big(f'(x - vt) + g'(x + vt) \big) + a_g z \big(f''(z - vt) + g''(z + vt) \big).$$

In general, it will not be true that $v^2(f''(z - vt) + g''(z + vt)) = a_g(f'(x - vt) + g'(x + vt)) + a_g z(f''(z - vt) + g''(z + vt))$, so the general solution to the torsion wave equation will not be a solution to the hanging chain wave equation.