
A different initial condition for torsional waves 

1. Recall that 𝑓(𝑥) =
1

2
𝑝(𝑥) −

1

2𝑣
∫ 𝑞(𝑥′)𝑑𝑥′
𝑥

0
 and 𝑔(𝑥) =

1

2
𝑝(𝑥) +

1

2𝑣
∫ 𝑞(𝑥′)𝑑𝑥′
𝑥

0
. For our case, 

𝑝(𝑥) = 𝜃(𝑥, 0) = 0, and 𝑞(𝑥) = �̇�(𝑥, 0) = 𝑆(𝑥) = {
𝛼, |𝑥| < 𝑥0
0, |𝑥| > 𝑥0

. With this, we have 

𝑓(𝑥) = −𝑔(𝑥) = −
1

2𝑣
∫ 𝑆(𝑥′)𝑑𝑥′
𝑥

0

=

{
 
 

 
 −

𝛼

2𝑣
𝑥,   |𝑥| < 𝑥0

−
𝛼

2𝑣
𝑥0,   𝑥 > 𝑥0

𝛼

2𝑣
𝑥0,   𝑥 < −𝑥0

 

Sketching these gives 

 

 

 

 

 

 

 

 

 

 

 

2. Combining the above two graphs, we see the red and the blue graphs will perfectly cancel out 

giving a flat line. 

 

 

 

 

 

 

 

 

𝑓(𝑥),  𝑔(𝑥) 

𝑥 𝑥0 −𝑥0 

𝛼𝑥0

2𝑣
 

−
𝛼𝑥0
2𝑣

 

𝑓(𝑥) + 𝑔(𝑥) 

𝑥 𝑥0 −𝑥0 

𝛼𝑥0

2𝑣
 

−
𝛼𝑥0
2𝑣

 



3. At 𝑡 = −
1

2

𝑥0

𝑣
, 𝜃 (𝑥, −

1

2

𝑥0

𝑣
) = 𝑓 (𝑥 +

1

2
𝑥0) − 𝑓 (𝑥 −

1

2
𝑥0). Looking at 𝑓(𝑥), we see that  

𝑓 (𝑥 +
1

2
𝑥0) =

{
 
 

 
 −

𝛼

2𝑣
(𝑥 +

1

2
𝑥0) , −

3

2
𝑥0 <  𝑥 <

1

2
𝑥0

−
𝛼

2𝑣
𝑥0, 𝑥 >

1

2
𝑥0

𝛼

2𝑣
𝑥0, 𝑥 < −

3

2
𝑥0

 

−𝑓 (𝑥 −
1

2
𝑥0) =

{
 
 

 
 
𝛼

2𝑣
(𝑥 −

1

2
𝑥0) , −

1

2
𝑥0 <  𝑥 <

3

2
𝑥0

𝛼

2𝑣
𝑥0, 𝑥 >

3

2
𝑥0

−
𝛼

2𝑣
𝑥0, 𝑥 < −

1

2
𝑥0

 

When 𝑥 < −
3

2
𝑥0, the two functions cancel out. When −

3

2
𝑥0 < 𝑥 < −

1

2
𝑥0, the two combine 

into a line with slope −
𝛼

2𝑣
. When −

1

2
𝑥0 < 𝑥 <

1

2
𝑥0, the two add to −

𝛼

2𝑣
𝑥0. When 

1

2
𝑥0 < 𝑥 <

3

2
𝑥0, we get a line with slope 

𝛼

2𝑣
, and finally when 𝑥 >

3

2
𝑥0, the two again cancel out. This is 

graphed below on the left. 

 

 

 

 

 

 

 

 

 

 

At 𝑡 =
1

2

𝑥0

𝑣
, 𝜃 (𝑥,

1

2

𝑥0

𝑣
) = 𝑓 (𝑥 −

1

2
 𝑥0) − 𝑓 (𝑥 +

1

2
𝑥0). Switching the order of the terms and 

factoring out a -1, we get 𝜃 (𝑥,
1

2

𝑥0

𝑣
) =  −(𝑓 (𝑥 +

1

2
𝑥0) − 𝑓 (𝑥 −

1

2
𝑥0)) =  −𝜃 (𝑥,−

1

2

𝑥0

𝑣
). The 

graph will then be exactly the negative as before. This is graphed above on the right. 

4. At 𝑡 =
𝑥0

𝑣
, 𝜃 (𝑥,

𝑥0

𝑣
) = 𝑓(𝑥 − 𝑥0) − 𝑓(𝑥 + 𝑥0). At this time we have 

𝑓(𝑥 − 𝑥0) =

{
 
 

 
 −

𝛼

2𝑣
(𝑥 − 𝑥0), 0 <  𝑥 < 2𝑥0

−
𝛼

2𝑣
𝑥0, 𝑥 > 2𝑥0

𝛼

2𝑣
𝑥0, 𝑥 < 0

 

𝜃 

𝑥 3

2
𝑥0 −

3

2
𝑥
0
 

−
𝛼𝑥0
2𝑣

 

1

2
𝑥0 −

1

2
𝑥0 

𝜃 

𝑥 3

2
𝑥0 −

3

2
𝑥0 −

1

2
𝑥0 

1

2
𝑥0 

𝛼𝑥0
2𝑣

 



−𝑓(𝑥 + 𝑥0) =

{
 
 

 
 
𝛼

2𝑣
(𝑥 + 𝑥0), −2𝑥0 <  𝑥 < 0

𝛼

2𝑣
𝑥0, 𝑥 > 0

−
𝛼

2𝑣
𝑥0, 𝑥 < −2𝑥0

 

For 𝑥 < −2𝑥0  and 𝑥 > 2𝑥0, the two will cancel out. For −2𝑥0 < 𝑥 < 0, the two form a line with 

slope −
𝛼

2𝑣
, and for 0 < 𝑥 < 2𝑥0, they will form a line with slope 

𝛼

2𝑣
. At 𝑡 =  −

𝑥0

𝑣
, we get the 

negative of this, following the same reasoning as in part 3. The two are graphed below. 

 

 

 

 

 

 

 

 

 

 

 

5. At 𝑡 =
3

2

𝑥0

𝑣
, 𝜃 (𝑥,

3

2

𝑥0

𝑣
) = 𝑓 (𝑥 −

3

2
𝑥0) − 𝑓 (𝑥 +

3

2
𝑥0). At this time we have 

𝑓(𝑥 − 𝑥0) =

{
 
 

 
 −

𝛼

2𝑣
(𝑥 −

3

2
𝑥0) ,

1

2
𝑥0 <  𝑥 <

5

2
𝑥0

−
𝛼

2𝑣
𝑥0, 𝑥 >

5

2
𝑥0

𝛼

2𝑣
𝑥0, 𝑥 <

1

2
𝑥0

 

−𝑓(𝑥 + 𝑥0) =

{
 
 

 
 
𝛼

2𝑣
(𝑥 + 𝑥0), −

5

2
𝑥0 <  𝑥 < −

1

2
𝑥0

𝛼

2𝑣
𝑥0, 𝑥 > −

1

2
𝑥0

−
𝛼

2𝑣
𝑥0, 𝑥 < −

5

2
𝑥0

 

For 𝑥 < −
5

2
𝑥0  and 𝑥 >

5

2
𝑥0, the two will cancel out. For −

5

2
𝑥0 < 𝑥 < −

1

2
𝑥0, the two form a 

line with slope −
𝛼

2𝑣
, and for 

1

2
𝑥0 < 𝑥 <

5

2
𝑥0, they will form a line with slope 

𝛼

2𝑣
. For −

1

2
𝑥0 < 𝑥 <

1

2
𝑥0, the two add up to −

𝑎𝑥0

𝑣
. At 𝑡 =  −

3

2

𝑥0

𝑣
, we get the negative of all this, following the same 

reasoning as in part 3. The two cases are graphed below. 

𝜃 (𝑥,−
𝑥0
𝑣
) ,  𝜃 (𝑥,  

𝑥0
𝑣
) 

2𝑥0 −2𝑥0 

𝛼𝑥0
𝑣

 

−
𝛼𝑥0
𝑣

 



 

 

 

 

 

 

 

 

 

 

 

 

Transverse waves on a string 

1. The little diagram on the right may be helpful in 

this case.  

The force on the 𝑛th mass due to the (𝑛 + 1) 

mass is 𝑇(𝑥𝑛+1) and directed along the line 

connecting the two masses. The 𝑦 component of 

this force will then be  

𝐹𝑛+1 = 𝑇(𝑥𝑛+1) sin(𝜃𝑟) 

 

The force on the 𝑛th mass due to the (𝑛 − 1) mass is −𝑇(𝑥𝑛) and it is directed along the line 

connecting those two masses. It’s 𝑦 component will be  

 

𝐹𝑛 = −𝑇(𝑥𝑛) sin(𝜃𝑙), 

 

 where 𝜃𝑙 is measured counterclockwise from the horizontal between the two masses at 𝑥𝑛 and 

𝑥𝑛−1 (this is so that the sign of the force will be correct in the cases when 𝑦𝑛 > 𝑦𝑛−1 and 𝑦𝑛 <

𝑦𝑛−1). The total vertical force is then  

 

𝐹𝑛+1 + 𝐹𝑛 = 𝑇(𝑥𝑛+1) sin(𝜃𝑟) − 𝑇(𝑥𝑛) sin(𝜃𝑙) 

 

Since we are assuming that the slope (and therefore the angle) is very small, we have that 

sin(𝜃𝑟) ≈
𝑦𝑛+1−𝑦𝑛

Δ𝑥
 and sin(𝜃𝑙) ≈

𝑦𝑛−𝑦𝑛−1

Δ𝑥
. Making this substitution, we have 

 

𝐹𝑛+1 + 𝐹𝑛 = 𝑇(𝑥𝑛+1)
𝑦𝑛+1 − 𝑦𝑛

Δ𝑥
− 𝑇(𝑥𝑛)

𝑦𝑛 − 𝑦𝑛−1
Δ𝑥

 . 

−
𝛼𝑥0
𝑣

 

𝛼𝑥0

𝑣
 

𝑥 5

2
𝑥0 −

5

2
𝑥0 −

1

2
𝑥0 

1

2
𝑥0 

𝜃 (𝑥,−
3

2

𝑥0
𝑣
) ,  𝜃 (𝑥,  

3

2

𝑥0
𝑣
) 

 
𝑦𝑛+1  

𝑦𝑛 
 

𝑦𝑛−1  
Δ𝑥 

 
Δ𝑥 

 

𝜃𝑟 
 𝜃𝑙 



 

2. Multiplying and dividing by Δ𝑥 on the right side of the last equation in 1., we get 

𝐹𝑛+1 + 𝐹𝑛 = Δ𝑥
𝑇(𝑥𝑛+1)

𝑦𝑛+1 − 𝑦𝑛
Δ𝑥

− 𝑇(𝑥𝑛)
𝑦𝑛 − 𝑦𝑛−1

Δ𝑥
Δ𝑥

. 

Interpreting the differences in terms of derivatives, this becomes 

𝐹𝑛+1 + 𝐹𝑛 = Δ𝑥
𝜕

𝜕𝑥
(𝑇(𝑥)

𝜕𝑦

𝜕𝑥
). 

3. Newton’s second law applied to mass 𝑚𝑛 is 𝐹𝑛+1 + 𝐹𝑛 = 𝑚𝑛
𝜕2𝑦𝑛

𝜕𝑡2
. Making this substitution, and 

recalling that 𝑚𝑛 = 𝜇(𝑥𝑛)Δ𝑥, and taking the limit where 𝑥 is continuous as in part 2., we find 

 

𝜇(𝑥)Δ𝑥
𝜕2𝑦

𝜕𝑡2
=  Δ𝑥

𝜕

𝜕𝑥
(𝑇(𝑥)

𝜕𝑦

𝜕𝑥
). 

Dividing both sides by Δ𝑥 we finally have 

 

𝜇(𝑥)
𝜕2𝑦

𝜕𝑡2
= 

𝜕

𝜕𝑥
(𝑇(𝑥)

𝜕𝑦

𝜕𝑥
). 

4. At each point along the chain, the tension in the chain must balance the weight of the chain 

below that point, so 𝑇(𝑧) = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛 𝑏𝑒𝑙𝑜𝑤 𝑧 = 𝑔 × (𝑚𝑎𝑠𝑠 𝑜𝑓 𝑐ℎ𝑎𝑖𝑛 𝑏𝑒𝑙𝑜𝑤 𝑧). The 

mass of the chain below 𝑧 is, in general, ∫ 𝜇(𝑧′)𝑑𝑧′
𝑧

0
. For our case 𝜇(𝑧) = 𝜇0, so the integral 

becomes ∫ 𝜇0𝑑𝑧
𝑧

0
= 𝜇0𝑧, and the tension is 

 

𝑇(𝑧) = 𝑔𝜇0𝑧 

 

Substituting into the final equation in part 3. (with the change 𝑥 → 𝑧) we get 

 

𝜇0
𝜕2𝑦

𝜕𝑡2
= 

𝜕

𝜕𝑧
(𝑔𝜇0𝑧

𝜕𝑦

𝜕𝑧
). 

 

We can pull the constants 𝜇0𝑔 out of the derivative and divide both sides by 𝜇0, giving 

 

𝜕2𝑦

𝜕𝑡2
=  𝑔

𝜕

𝜕𝑧
(𝑧
𝜕𝑦

𝜕𝑧
). 

 

Applying the product rule, we finally obtain 

 

𝜕2𝑦

𝜕𝑡2
= 𝑔

𝜕𝑦

𝜕𝑧
+ 𝑔𝑧

𝜕2𝑦

𝜕𝑧2
. 

 

For the equation for torsion waves, the general solution was 𝑓(𝑥 − 𝑣𝑡) + 𝑔(𝑥 + 𝑣𝑡), for general 

functions 𝑓 and 𝑔. We can now check if 𝑦 =  𝑓(𝑧 − 𝑣𝑡) + 𝑔(𝑧 + 𝑣𝑡) solves the wave equation 

for a hanging chain. To avoid any confusion between the function 𝑔, and 𝑔 the acceleration due 



to gravity, I will call the acceleration due to gravity 𝑎𝑔. Plugging in if 𝑦 =  𝑓(𝑧 − 𝑣𝑡) + 𝑔(𝑧 + 𝑣𝑡) 

to the left of the wave equation for the hanging chain, we get 

𝜕2𝑦

𝜕𝑡2
= 𝑣2(𝑓′′(𝑧 − 𝑣𝑡) + 𝑔′′(𝑧 + 𝑣𝑡)). 

Plugging 𝑦 =  𝑓(𝑥 − 𝑣𝑡) + 𝑔(𝑥 + 𝑣𝑡) into the right side, we get 

𝑎𝑔
𝜕𝑦

𝜕𝑧
+ 𝑎𝑔𝑧

𝜕2𝑦

𝜕𝑧2
= 𝑎𝑔(𝑓

′(𝑥 − 𝑣𝑡) + 𝑔′(𝑥 + 𝑣𝑡)) + 𝑎𝑔 𝑧(𝑓
′′(𝑧 − 𝑣𝑡) + 𝑔′′(𝑧 + 𝑣𝑡)). 

 

In general, it will not be true that 𝑣2(𝑓′′(𝑧 − 𝑣𝑡) + 𝑔′′(𝑧 + 𝑣𝑡)) =  𝑎𝑔(𝑓
′(𝑥 − 𝑣𝑡) +

𝑔′(𝑥 + 𝑣𝑡)) + 𝑎𝑔 𝑧(𝑓
′′(𝑧 − 𝑣𝑡) + 𝑔′′(𝑧 + 𝑣𝑡)), so the general solution to the torsion wave 

equation will not be a solution to the hanging chain wave equation. 


