A different initial condition for torsional waves
1. Recallthat f(x) = %p(x) - %fox q(x")dx"and g(x) = %p(x) + zivfgcq(x’)dx’. For our case,

p(x) = 8(x,0) = 0,and q(x) = 6(x,0) = S(x) = {a, |x] < xq

0, x| > xy With this, we have
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2. Combining the above two graphs, we see the red and the blue graphs will perfectly cancel out
giving a flat line.
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3. Att= —lﬂ 9( —%%) = f(x +%x0) —f(x —%xo). Looking at f (x), we see that
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When x < — %o, the two functions cancel out. When =5 %0 <X < —2X, the two combine
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into a line with slope —i When —5%0 <X <X, the two add to —ixo When Z%o <x <

xo, we get a line with slope and finally when x > = xO, the two again cancel out. This is
graphed below on the left.
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Att=-=,0 ( 1x°) =f (x — xo) -f (x + %xo). Switching the order of the terms and

factoring outa-1, we get 8 (x —7") = —(f (x +%x0) —f(x _%xo)) = _g( _%@) The

graph will then be exactly the negative as before. This is graphed above on the right.

Att =% g ( ) f(x —xp) — f(x + x0). At this time we have
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For x < —2x, and x > 2x,, the two will cancel out. For —2x, < x < 0, the two form a line with
slope — %, and for 0 < x < 2x,, they will form a line with slope % Att = — %, we get the

negative of this, following the same reasoning as in part 3. The two are graphed below.
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For x < —5%o and x > > X0 the two will cancel out. For —5%X <x< —Exo,the two form a
: . 1 5 . . . 1
line with slope —%, and for > %o <X < Xo, they will form a line with slope 2% For —5%X <x<

1 3 . . .
5 X0 the two add up to — % Att = — E%’ we get the negative of all this, following the same

reasoning as in part 3. The two cases are graphed below.



Transverse waves on a String

1.

The little diagram on the right may be helpful in
this case.
The force on the nth mass due to the (n + 1)

mass is T (x,41) and directed along the line
connecting the two masses. The y component of Ax Ax
this force will then be

Fni1 = T(xp41) sin(6;)

The force on the nth mass due to the (n — 1) mass is —T(x,,) and it is directed along the line
connecting those two masses. It’s y component will be

Fy = =T (xy) sin(6)),

where 8, is measured counterclockwise from the horizontal between the two masses at x;, and
Xn_1 (this is so that the sign of the force will be correct in the cases when y,, > y,,_; and y,, <
Vn—1)- The total vertical force is then

Fpy1 + By = T(xp4q) sin(6;) — T (xy,) sin(6;)

Since we are assuming that the slope (and therefore the angle) is very small, we have that

sin(0,) = % and sin(6,) ~ %. Making this substitution, we have
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Frop1 + By = T(xp4q)



2.

Multiplying and dividing by Ax on the right side of the last equation in 1., we get
T(xn+1) yn+£x In _ T(Xn) n A):)C’n—l
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Interpreting the differences in terms of derivatives, this becomes
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recalling that m,, = u(x,,)Ax, and taking the limit where x is continuous as in part 2., we find

Newton’s second law applied to massm,, is F, .1 + F,, = m,, Making this substitution, and

9%y 0 dy
Ax— = Ax— (T —)
Hhxgg = Mg (T 5,
Dividing both sides by Ax we finally have
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At each point along the chain, the tension in the chain must balance the weight of the chain
below that point, so T(z) = weight of chain below z = g X (mass of chain below z). The

mass of the chain below z is, in general, fozu(z’)dz’. For our case u(z) = o, so the integral

becomes fOZ UodzZ = pgz, and the tension is

T(z) = guoz

Substituting into the final equation in part 3. (with the change x — z) we get
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We can pull the constants g out of the derivative and divide both sides by p, giving
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Applying the product rule, we finally obtain
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For the equation for torsion waves, the general solution was f(x — vt) + g(x + vt), for general
functions f and g. We can now check if y = f(z — vt) + g(z + vt) solves the wave equation
for a hanging chain. To avoid any confusion between the function g, and g the acceleration due



to gravity, | will call the acceleration due to gravity a,. Plugging inif y = f(z — vt) + g(z + vt)
to the left of the wave equation for the hanging chain, we get

aZy 2 ” "
3z= " (f (z—vt)+g (z+vt)).
Plugging y = f(x — vt) + g(x + vt) into the right side, we get
dy 9%y
g5~ + g2 53 = ag(f’(x —vt)+g'(x+ vt)) + aq z(f”(z —vt)+g"(z+ vt)).

In general, it will not be true that vz(f”(z —vt)+g"(z+ vt)) = ag(f’(x —vt) +
g'(x+ vt)) +ay Z(f”(z —vt)+g"(z+ vt)), so the general solution to the torsion wave
equation will not be a solution to the hanging chain wave equation.



