Homework 1

Due date: Wednesday, January 31

A different initial condition for torsional waves

In lecture we worked out the solution $\theta(x, t)$ for torsional waves when all the oscillators are initially at rest, $\dot{\theta}(x, 0)=0$, and the initial amplitudes had the shape of a triangle function, $\theta(x, 0)=T(x)$. In this exercise you will work out the solution when initially the amplitudes are all zero, $\theta(x, 0)=0$, and the oscillators between $x=-x_{0}$ and $x=x_{0}$ are given a nonzero angular velocity $\alpha>0$. We can express this initial condition as $\dot{\theta}(x, 0)=S(x)$, where

$$
S(x)=\left\{\begin{array}{cc}
\alpha, & |x|<x_{0} \\
0, & |x|>x_{0}
\end{array}\right.
$$

1. First make sketches of the functions $f(x)$ and $g(x)$. Mark all features of these functions by their values on the horizontal and vertical axes.
2. Make a sketch of $\theta(x, 0)=f(x)+g(x)$ by graphically combining your graphs of f and g. Again, annotate any features in your function.
3. Make a sketch of $\theta(x, t)=f(x-v t)+g(x+v t)$, for times $t= \pm(1 / 2)\left(x_{0} / v\right)$, annotating any features in your function.
4. Repeat for $t= \pm\left(x_{0} / v\right)$.
5. Repeat for $t= \pm(3 / 2)\left(x_{0} / v\right)$.

Transverse waves on a string

Consider a generalization of the standard stretched string where both the mass density $\mu(x)$ and tension $T(x)$ are functions of the coordinate x along the length of the string. In this exercise you derive the equation of small-amplitude transverse waves on such a string. Transverse means the displacement $y(x)$ is perpendicular to the string and small-amplitude means that the "slope" of the string is small everywhere:

$$
\left|\frac{d y}{d x}\right| \ll 1
$$

Divide the string into small segments of length Δx and replace each segment by a mass point. The position of the n-th mass point is $x_{n}=n \Delta x$ and its mass is $m_{n}=\mu\left(x_{n}\right) \Delta x$. The tension acting on this mass point, due to mass point $n+1$, is
$T\left(x_{n+1}\right)$. This tension creates a force toward positive x. By Newton's third law the tension acting on this same mass point, but due to mass point $n-1$, is $T\left(x_{n}\right)$ and the corresponding force is toward negative x.

1. When calculating the transverse motion we are only interested in the y-component of force and the resulting y-component of acceleration (the x-components of force cancel in the small amplitude approximation). Calculate the y-force F_{n+1} acting on mass point n on one side (due to $n+1$) and the y-force F_{n} acting on the other side (due to $n-1$). These will depend on the displacements y_{n-1}, y_{n}, y_{n+1} and the tensions on the two sides. Combine these to get the net force

$$
\begin{equation*}
F_{n+1}+F_{n} \tag{1}
\end{equation*}
$$

acting on mass point n. Be sure to simplify your answer by keeping only the lowest order terms in the small amplitude approximation. ${ }^{1}$
2. Interpret the differences in your answer for (1) in terms of derivatives. You should end up with

$$
F_{n+1}+F_{n}=\Delta x \frac{\partial}{\partial x}(\cdots)
$$

where \cdots involves $T(x)$ and $\partial y / \partial x$.
3. Write down Newton's second law for mass point n. After dividing by the common Δx factor the result will be a wave equation:

$$
\mu(x) \frac{\partial^{2} y}{\partial t^{2}}=\frac{\partial}{\partial x}(\cdots) .
$$

4. A hanging chain, or a "string" whose tension is created entirely by the weight of its links, has very interesting wave behavior! Specialize the wave equation you just derived for a chain hanging vertically from a hook on the ceiling, and with uniform mass density $\mu(z)=\mu_{0}$. What is $T(z)$ for this string, if $z=0$ is the height of the lower end of the chain and $z=L$ is the height of the hook? Is the general solution of the simple wave equation (as for torsional waves) also a solution for the hanging chain?
[^0]
[^0]: ${ }^{1}$ For small $\theta, \sin \theta \approx \tan \theta=$ slope.

