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Homework 1

Due date: Thursday, September 15

1. In this problem you supply some of the details that were left out of the
September 1 lecture on the complexity analysis of the backtracking algo-
rithm. Although the method of analysis is quite general, you should focus
on the application to edge matching puzzles. Recall that n denotes the total
number of tiles and x is the fraction of them that have been placed.

(a) Recall that P(z) is the set of all tile placements at depth z — sub-
set selection, permutation, rotations — irrespective of the placed tiles
having matched edges. Show that for large n
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(b) Let K denote the random variable of tile colorings. Assume that the
distribution of K is such that all edge colors are independent and
drawn for the same color distribution. Let ¢;(e; p, K) and cy(e; p, K)
be the colors adjacent to edge e € E(x) for tile placement p € P(x)
and coloring K. Show that
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where ¢ is the “surprise”: the probability that two edge colors (inde-
pendently drawn from the same distribution) match.
(c) From the formula (given in lecture)
o)=Y II da(ep, K) = cale;p, K))
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for the number of edge-matched tilings at depth x (number of nodes
of the search tree at that depth), show that
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where the tree-width function w,(z) depends on parameters only via

the combination
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(d)

(e

Sketch w,(x) for 0 < x < 1 in four cases: o = 1/e, 1/e < a < 1,
a = 1,and 1 < «a. Determine the exponent y(«) in the backtracking
complexity e¥(®)" by the number of nodes in the widest part of the tree
that must be examined to find just one branch that leads to the solution
at x = 1. Find the depth =™ where the tree is widest.

To create a puzzle that — even in the over-constrained case w, (1) < 0
— is guaranteed to have a solution we use a different ensemble of
colorings, with half as many independent choices such that colors on
adjacent edges are matched (in a particular p € P(1)). Call the ran-
dom variable for such colorings K. It is much harder to work in this
ensemble because the expectation value of the product of Kroenecker
delta’s does not factorize and depends on the placement p € P(z).
However, it is possible to evaluate

<<5(Cl (e;pa KI) = CQ(e;pv KI)) >>p,K’ )

where the double angle-brackets denote an average over the matched-
color ensemble and there is also a uniform average over the elements
p € P(x). Show that this average equals ¢ to leading order (n — oo
for fixed o).

2. A unitary matrix is called Hadamard if all its matrix elements have the same
magnitude.

(a)

(b)

Verify that for all n > 1, the Fourier matrix

Fkl = exXp (27rzkl/n)/\/ﬁ
is an n X n Hadamard matrix.

By pre- and post-multiplying a Hadamard matrix A by diagonal ma-
trices of phases, the transformed matrix H is still unitary and has
the same element magnitudes. With this “dephasing” operation we
can eliminate some continuous degrees of freedom and transform any
Hadamard matrix to a standard form where all elements in its first row
and column are equal to 1/y/n. Show that the number of remaining
free variables exactly equals the naive count of the constraints satisfied
by a unitary matrix. The set of dephased Hadamard matrices should
thus form a discrete set, the Fourier matrices being a particular exam-
ple.
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(c) However, show that the continuous family of dephased matrices
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for arbitrary real ¢ is Hadamard. Naive constraint counting can thus
fail.



