Logarithm conventions

1. Since the energy change is $\Delta E=k_{B} T$, the entropy change is $\Delta S=\frac{\Delta E}{T}=k_{B}$. This means $S_{\text {new }}=S_{\text {initial }}+\Delta S=k_{B}\left(\log _{2}(\Omega)+1\right)=k_{B}\left(\log _{2}(\Omega)+\log _{2}(2)\right)=k_{B} \log _{2}(2 \Omega)$, which means $\Omega_{\text {new }}=2 \Omega$ and therefore the change in Ω is

$$
\Delta \Omega=\Omega
$$

2. Following the same reasoning given in lecture, we find that $P\left(E_{i}\right) \propto \Omega\left(E-E_{i}\right)=2^{\frac{s\left(E-E_{i}\right)}{k_{B}}}$, and $S\left(E-E_{i}\right) \approx S(E)-\left.\frac{\partial S}{\partial E}\right|_{E_{i}} E_{i}=S(E)-\frac{E_{i}}{T}$, giving $2^{\frac{S\left(E-E_{i}\right)}{k_{B}}} \propto 2^{-\frac{E_{i}}{k_{B} T}}$, meaning

$$
P\left(E_{i}\right) \propto 2^{-\frac{E_{i}}{k_{B} T}}
$$

3. The ratio of one Kevin (K) to one Kelvin (K) is $\frac{1 \mathrm{~K}}{1 K}=\frac{\left(1.38 \times 10^{-23} \frac{J}{\mathrm{bit}}\right)}{1.38 \times 10^{-23} \frac{J}{\text { nat }}}=1 \frac{\text { nat }}{\text { bit }}$. Since $e^{\text {nat }}=e$ and $e^{\text {bit }}=2=e^{\ln (2)}$ we have that nat $=1$, bit $=\ln (2)$, so $\frac{1 \mathrm{~K}}{1 K}=\frac{1}{\ln (2)}$. We thus have

$$
300 K=\frac{300}{\ln (2)} \mathrm{K}=432.8 \mathrm{~K}
$$

Temperature via infinitesimal entropy changes

1. Recall that when the volume is changed slowly, $E \propto 1 / V^{\frac{2}{3}}$, so $\frac{E+\Delta E_{1}}{E}=\frac{V^{\frac{2}{3}}}{(V-\Delta V)^{\frac{2}{3}}}=\frac{1}{\left(1-\frac{\Delta V}{V}\right)^{\frac{2}{3}}} \approx$ $1+\frac{2}{3} \frac{\Delta V}{V}$, which means $\frac{\Delta E_{1}}{E} \approx \frac{2}{3} \frac{\Delta V}{V}$, or

$$
\Delta E_{1} \approx \frac{2}{3} \frac{\Delta V}{V} E
$$

2. Since the change is occurring slowly, the entropy is constant. This was one of the implications of $E \propto 1 / V^{\frac{2}{3}}$, therefore

$$
\Delta S_{1}=0
$$

3. Freely expanding means no forces are acting on the gas, so the work on the gas is zero, meaning

$$
\Delta E_{2}=0
$$

4. For a monoatomic gas we know $\Omega \propto V^{N}$ for constant energy, so $S=N k_{B} \ln (V)+C$, and $\Delta S_{2}=S_{\text {final }}-S_{\text {initial }}=N k_{B} \ln \left(\frac{V}{V-\Delta V}\right)=-N k_{B} \ln \left(1-\frac{\Delta V}{V}\right) \approx \frac{N k_{B} \Delta V}{V}$.
5. The change in entropy divided by the change in energy is $\frac{\Delta S}{\Delta E}=\frac{\Delta S_{2}}{\Delta E_{1}}=\frac{\frac{N k_{B} \Delta V}{V}}{\frac{2}{3} \frac{\Delta V}{V} E}=\frac{3}{2} \frac{N k_{B}}{E}=\frac{1}{T}$, or

$$
T=\frac{2}{3} \frac{E}{N k_{B}}
$$

Rearranging the above equation we get $E=\frac{3}{2} N k_{B} T$, in agreement with equipartition.

Heat Capacity of Two Simple Systems

1. For a diatomic gas, $E=\frac{5}{2} N k_{B} T$, so $C=\frac{d E}{d T}=\frac{5}{2} N k_{B}$, proportional to N and $\frac{C}{k_{B}}=\frac{5}{2} N$ is unitless.
2. For a system of magnetic dipoles in a magnetic field, $E=-\frac{N b^{2}}{k_{B} T}$, so $C=\frac{d E}{d T}=\frac{N b^{2}}{k_{B} T^{2}}$, which is proportional to N, and $\frac{C}{k_{B}}=\frac{N b^{2}}{k_{B}^{2} T^{2}}$ is unitless, since b and $k_{B} T$ have units of energy.
Precision of the entropy maximum
3. We know that for a monoatomic gas at constant volume $\Omega \propto E^{\frac{3}{2} N}$, so for the combined system we have

$$
\Omega=\Omega_{1}(E+\Delta E) \times \Omega_{2}(E-\Delta E) \propto(E+\Delta E)^{\frac{3}{2} N}(E-\Delta E)^{\frac{3}{2} N}
$$

Factoring out an $E^{\frac{3}{2} N}$ from each factor we have $\Omega(\Delta E) \propto E^{3 N}\left(1+\frac{\Delta E}{E}\right)^{\frac{3}{2} N}\left(1-\frac{\Delta E}{E}\right)^{\frac{3}{2} N}=$ $E^{3 N}\left(1-\frac{\Delta E^{2}}{E^{2}}\right)^{\frac{3 N}{2}}$, but $E^{3 N}$ is simply a constant, so

$$
\Omega(\Delta E) \propto\left(1-\frac{\Delta E^{2}}{E^{2}}\right)^{\frac{3 N}{2}}
$$

2. We can rewrite our last expression as $\Omega(\Delta E) \propto\left(1-\frac{\frac{3}{2} N\left(\frac{\Delta E}{E}\right)^{2}}{\frac{3 N}{2} N}\right)^{\frac{3 N}{2}}$. Letting $M:=\frac{3}{2} N$, we have $\Omega(\Delta E) \propto\left(1-\frac{\frac{3}{2} N\left(\frac{\Delta E}{E}\right)^{2}}{M}\right)^{M}$. Now for large N which means large M we get $\Omega(\Delta E) \propto e^{-\frac{3}{2} N\left(\frac{\Delta E}{E}\right)^{2}}$, as long as $\frac{3}{2} N\left(\frac{\Delta E}{E}\right)^{2}$ does not also diverge, which it won't, because E will grow as N grows.
3. Letting $\epsilon=\frac{\Delta E}{E}$, we can write our previous result as

$$
\Omega(\Delta E) \propto e^{-\frac{3}{2} N \epsilon^{2}}=e^{-\frac{1}{2(1 / 3 N)}}=e^{-\frac{1}{2}\left(\frac{\epsilon}{1 / 3 N}\right)^{2}}
$$

Which means $\sigma=\frac{1}{\sqrt{3 N}} \approx 7.4 \times 10^{-13}$.

