Homework 12

Due date: Tuesday, May 7

Logarithm conventions

Suppose George Boole and Ludwig Boltzmann were switched at birth, so that a base2 leaning scientist ended up laying the foundations of thermodynamics. Boole would have defined entropy as

$$
S=k_{\mathrm{B}} \log _{2} \Omega
$$

where the temperature-energy conversion factor k_{B}, called Boole's constant, has the value

$$
k_{\mathrm{B}}=\frac{1.38 \times 10^{-23} \text { Joule }}{\mathrm{K}}
$$

and the temperature unit

$$
1 \mathrm{~K}=\frac{1.38 \times 10^{-23} \text { Joule }}{1 \text { bit }}
$$

is called the "Kevin". Temperature is still defined as

$$
\frac{1}{T}=\frac{\Delta S}{\Delta E}
$$

1. Consider a system in thermal equilibrium at temperature T. Using the Boolean conventions, if energy $\Delta E=k_{\mathrm{B}} T$ is transferred to the system as heat, what is the change in Ω, the number of states accessible to the system?
2. Now consider a gas at temperature T, again using Boolean conventions. If a molecule in the gas has energy E_{i} when in state i (momentum, angular momentum, etc.), what is the probability, up to normalization, of finding the molecule in state i ?
3. How many Kevins is room temperature (300 Kelvin)? The two logarithm units are defined by $e^{\text {nat }}=e, e^{\text {bit }}=2$.

Temperature via infinitesimal energy and entropy changes

An ideal gas of N atoms has energy E when it initially occupies a volume V. Answer the following assuming infinitesimal volume changes $\Delta V \ll V$.

1. What is the energy change ΔE_{1} (magnitude and sign) after the gas is slowly compressed to a slightly smaller volume $V-\Delta V$?
2. What is the entropy change (magnitude and sign) ΔS_{1} after the compression?
3. Now the gas is allowed to freely ${ }^{1}$ expand back to its original volume. What is the corresponding energy change (magnitude and sign) ΔE_{2} ?
4. What is the (magnitude and sign) of the entropy change ΔS_{2} resulting from the free expansion?
5. Calculate the temperature T from the net energy change $\Delta E=\Delta E_{1}+\Delta E_{2}$ and net entropy change $\Delta S=\Delta S_{1}+\Delta S_{2}$. Is your answer consistent with the equipartition theorem?

Heat capacity of two simple systems
Calculate the heat capacity C of the following two systems, both in thermal equilibrium at temperature T :

1. Diatomic gas of N molecules.
2. N magnetic dipoles in a magnetic field with two-state energies $B(\pm \mu)= \pm b$.

Start with the energy $E(T)$ of each system when it is in equilibrium at temperature T. For the system of dipoles you may use the $E(T)$ derived in lecture. The heat capacity is

$$
C=\frac{d E}{d T} .
$$

Both heat capacities should be proportional to the number of particles N, and C / k_{B} should be dimensionless. For checking the latter, recall that $k_{\mathrm{B}} T$ is an energy.
The heat capacity of the dipole system depends on T, which can have either sign. What can you say about the sign of C ?

[^0]
Precision of the entropy maximum

Consider two identical boxes of monoatomic gas, each containing N atoms. By symmetry, when the two systems are brought into thermal contact they will divide the total energy evenly. But how precisely does the maximization-of-the-number-of-accessible-microstates-principle determine the equality of the two energies?
When the energy discrepancy is ΔE, the number of accessible microstates in the compound system is

$$
\Omega(\Delta E)=\Omega_{1}(E+\Delta E) \times \Omega_{2}(E-\Delta E)
$$

where $2 E$ is the total energy of the compound system.

1. Show that

$$
\begin{aligned}
\Omega(\Delta E) & \propto(E+\Delta E)^{3 N / 2}(E-\Delta E)^{3 N / 2} \\
& \propto\left(1-(\Delta E / E)^{2}\right)^{3 N / 2},
\end{aligned}
$$

where the proportionality symbol takes care of constants, including the volume (which will not be varied).
2. Use the math fact

$$
\lim _{M \rightarrow \infty}\left(1-\frac{x}{M}\right)^{M}=e^{-x}
$$

to rewrite Ω as a Gaussian function:

$$
\Omega(\Delta E) \propto e^{-\frac{3 N}{2}\left(\frac{\Delta E}{E}\right)^{2}}
$$

3. Next, define the fractional energy discrepancy $\epsilon=\Delta E / E$ and write the Gaussian in the standard form

$$
\Omega(\Delta E) \propto e^{-\frac{1}{2}(\epsilon / \sigma)^{2}}
$$

What is the standard deviation σ of the fractional energy discrepancy? Work out a numerical value when N is Avogadro's number.

[^0]: ${ }^{1}$ Free expansion is hard to realize in practice because atoms move very fast! Think of the process as an explosive outward motion of a wall, so fast, that from the perspective of the more slowly moving atoms, there is suddenly more space that can be occupied. The molecules experience no forces from the rapidly moving wall.

