
Physics 2218, Spring 2024 1

Homework 11

Due date: Wednesday, May 1

Particle position distribution in a 3D potential

Consider a point particle confined to a 3D box and subject to a position-dependent
potential energy U(r). Calculate the probability density ρ(r) of the particle’s position
by assuming that the particle’s total energyE is everywhere greater than the potential
energy, and that the ergodic hypothesis applies. The probability density is normalized
so that ∫

box
ρ(r) d3r = 1 .

Tracer particle analysis of soft billiards

The ergodic hypothesis is difficult to prove, even for simple systems. This exercise
should at least make the hypothesis plausible for the soft billiards system.

Instead of following a single very complex trajectory, we will analyze simple families
of trajectories over a limited time. The family we have in mind is best described as
a set of “tracer” particles, initially arranged with uniform density ρ along the y-axis.
All particles are in the low potential (“fast”) region and have velocity v1 x̂.

First consider the total time T1 spent by the tracer particles, in region 1, when crossing
a circular region of radius r :

y
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Set this up by first showing that the tracer particles with “impact parameter” y spend
time

t1(y) =
2
√
r2 − y2
v1

in the circular region. Then compute the integral

T1 =
∫ +r

−r
t1(y)(ρ dy)

to find the time spent by all the tracer particles in the circular region.

Hint: The integral is just the area of a familiar shape.

Next suppose the parallel streaming tracer particles encounter a circular region of
higher potential, where their speed slows to v2. This region also has radius r, so we
can compare with the earlier calculation. The time spent by all the tracer particles
crossing this region can again be written as an integral,

T2 =
∫ +r

−r
t2(y)(ρ dy),

where t2(y) is the time spent by a tracer particle with impact parameter y, as before.

Now use Schnell’s law for particles and this diagram

y

θ1
θ2

θ1

to show that

t2(y) =


(
2r
v2

)√
1−

(
v1
v2

)2 (y
r

)2
, |y| <

(
v2
v1

)
r

0 , otherwise.

Explain why the integrand is zero at the larger impact parameters.

Finally, evaluate the integral for T2 and observe that it exactly equals T1 !

Hint: After a change of variable this integral is identical to the one you calculated
earlier.
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Monoatomic and diatomic gases in thermal contact

Consider a monoatomic gas comprising N1 atoms of mass m1, confined to a box of
volume V1, and having total energy E1. Also consider a diatomic gas comprising N2

molecules1 of mass m2, moment of inertia I , confined to a box of volume V2, and
having total energy E2. In the monoatomic gas the energy of a single particle (atom)
is

1

2m1

(p2x + p2y + p2z) .

A single particle (molecule) in the diatomic gas has energy

1

2m2

(p2x + p2y + p2z) +
1

2I
(L2

a + L2
b) ,

where La and Lb are the angular momenta about two orthogonal axes perpendicular
to the instantaneous axis of the molecule.

Try to answer all of the following questions without using formulas. Microstate-
counting is a valuable skill and is actually free of complicated details when you are
allowed — as in this problem — to ignore constant factors. You may also assume N1

and N2 are very very large.

1. Up to a constant factor, calculate the number of microstates of the monoatomic
gas, Ω1(V1, E1).

2. Up to an additive constant, calculate the entropy of the monoatomic gas, S1(V1, E1).

3. Calculate the temperature of the monoatomic gas, T1.

4. Up to a constant factor, calculate the number of microstates of the diatomic gas,
Ω2(V2, E2).

5. Up to an additive constant, calculate the entropy of the diatomic gas, S2(V2, E2).

6. Calculate the temperature of the diatomic gas, T2.

7. Now suppose the two boxes of gas are placed next to each other, and the parti-
tion between them allows the transfer of energy as heat. In other words, the two
systems are in thermal contact. Calculate the energy transferred ∆E, so that the
gases, now with energies E1 + ∆E and E2 −∆E, are in thermal equilibrium.
Express ∆E only in terms of N1, N2, T1 and T2.

8. Does the sign of ∆E agree with the notion that “heat flows from hot to cold”?

1Do not confuse this with nitrogen molecules. The symbol N2 denotes the number of molecules in the
second box.


