## Schnell's law for particles

1. Schnell's law states $\left|k_{1}\right| \sin \left(\theta_{1}\right)=\left|k_{2}\right| \sin \left(\theta_{2}\right)$. The phase velocity is given by $v_{\phi}=\frac{\omega}{k}$, which means $k=\frac{\omega}{v_{\phi}}$. By conservation of energy, we know $\omega$ is a constant, so Schnell's law is

$$
\frac{\sin \left(\theta_{1}\right)}{v_{\phi, 1}}=\frac{\sin \left(\theta_{2}\right)}{v_{\phi, 2}} .
$$

2. The group velocity is $v_{g}=\frac{\partial \omega}{\partial k}=2 A k$, which means $k=\frac{v_{g}}{2 A^{\prime}}$ and $A=\frac{\hbar}{2 m}=$ constant, so Schnell's law is

$$
v_{g, 1} \sin \left(\theta_{1}\right)=v_{g, 2} \sin \left(\theta_{2}\right)
$$

## Reflection and transmission of a particle wave

1. The matching conditions are the same as those given in lecture, so the transmission and reflection coefficients are also given by the same equations:

$$
\tilde{R}=\frac{k_{1}-k_{2}}{k_{1}+k_{2}}, \tilde{T}=\frac{2 k_{1}}{k_{1}+k_{2}} .
$$

For this case, we have $k_{1}=\sqrt{\frac{\hbar \omega-U_{1}}{\hbar A}}$, and $k_{2}=\sqrt{\frac{\hbar \omega-U_{2}}{\hbar A}}$. Substituting into the expressions for $\tilde{R}$ and $\tilde{T}$, and multiplying the numerator and denominator by $\sqrt{\hbar A}$, we have

$$
\tilde{R}=\frac{\sqrt{\hbar \omega-U_{1}}-\sqrt{\hbar \omega-U_{2}}}{\sqrt{\hbar \omega-U_{1}}+\sqrt{\hbar \omega-U_{2}}}, \tilde{T}=\frac{2 \sqrt{\hbar \omega-U_{1}}}{\sqrt{\hbar \omega-U_{1}}+\sqrt{\hbar \omega-U_{2}}} .
$$

For case a, the transmission and reflection probabilities are simply the squares of the above expressions.
2. In case b, we have that $\hbar \omega<U_{2}$, which means $k_{2}=\sqrt{\frac{\hbar \omega-U_{2}}{\hbar A}}=i \sqrt{\frac{U_{2}-\hbar \omega}{\hbar A}}$ is purely imaginary. In this case, the coefficients become

$$
\tilde{R}=\frac{\sqrt{\hbar \omega-U_{1}}-i \sqrt{U_{2}-\hbar \omega}}{\sqrt{\hbar \omega-U_{1}}+i \sqrt{U_{2}-\hbar \omega}}, \tilde{T}=\frac{2 \sqrt{\hbar \omega-U_{1}}}{\sqrt{\hbar \omega-U_{1}}+i \sqrt{U_{2}-\hbar \omega}} .
$$

And the wavefunction in the region with potential energy $U_{2}$ is $\tilde{\psi}=\tilde{T} e^{i k_{2} y}=\tilde{T} e^{i\left(i \sqrt{\frac{U_{2}-\hbar \omega}{\hbar A}}\right)}=$ $\tilde{T} e^{-\sqrt{\frac{U_{2}-\hbar \omega}{\hbar A}}}$, which is evanescent. The reflection probability is

$$
|R|^{2}=\tilde{R} \tilde{R}^{*}=\left(\frac{\sqrt{\hbar \omega-U_{1}}-i \sqrt{U_{2}-\hbar \omega}}{\sqrt{\hbar \omega-U_{1}}+i \sqrt{U_{2}-\hbar \omega}}\right)\left(\frac{\sqrt{\hbar \omega-U_{1}}+i \sqrt{U_{2}-\hbar \omega}}{\sqrt{\hbar \omega-U_{1}}-i \sqrt{U_{2}-\hbar \omega}}\right)=1 .
$$

## Sound at an interface

1. We know $s_{<}(y, t)=e^{i k_{1} y}+R e^{-i k_{1} y}, S_{>}(y, t)=T e^{i k_{2} y}$. Matching them at $y=0$ gives

$$
1+R=T .
$$

2. For this case, $\nabla \cdot \boldsymbol{s}=\frac{\partial s}{\partial y}$, from which we have $\frac{\partial s}{\partial y}=-\frac{\delta p}{B}$, or $\delta p=-B \frac{\partial s}{\partial y}$. Since the pressure perturbation on either side of the interface must be equal, this means $\left.B_{1} \frac{\partial s_{<}}{\partial y}\right|_{y=0}=$ $\left.B_{2} \frac{\partial s_{>}}{\partial y}\right|_{y=0}$, which implies

$$
k_{1} B_{1}(1-R)=k_{2} B_{2} T .
$$

3. Substituting the result from part 1 into that from part 2 we have $k_{1} B_{1}(1-R)=k_{2} B_{2}(1+R)$, which gives

$$
R=\frac{k_{1} B_{1}-k_{2} B_{2}}{k_{1} B_{1}+k_{2} B_{2}}=\frac{B_{1}-\frac{k_{2}}{k_{1}} B_{2}}{B_{1}+\frac{k_{2}}{k_{1}} B_{2}},
$$

From $v_{1} k_{1}=v_{2} k_{2}$ we have $\frac{k_{2}}{k_{1}}=\frac{v_{1}}{v_{2}}$, so

$$
R=\frac{B_{1}-\frac{v_{1}}{v_{2}} B_{2}}{B_{1}+\frac{v_{1}}{v_{2}} B_{2}}=\frac{\frac{B_{1}}{v_{1}}-\frac{B_{2}}{v_{2}}}{\frac{B_{1}}{v_{1}}+\frac{B_{2}}{v_{2}}}=\frac{\beta_{1}-\beta_{2}}{\beta_{1}+\beta_{2}}
$$

And substituting into the result of part 2 and simplifying,

$$
T=\frac{2 \beta_{1}}{\beta_{1}+\beta_{2}}
$$

4. We know $I=B v\left(\frac{\partial s}{\partial y}\right)^{2}$ which at $y=0$ is $-B k^{2} v C^{2}=-\beta \omega^{2} C^{2}$ where $C$ is $1, R, T$ for the incident, reflected and transmitted wave respectively. The sum of the reflected and transmitted intensities is then

$$
\begin{gathered}
I_{r}+I_{t}=-\beta_{1} \omega^{2} R^{2}-\beta_{2} \omega^{2} T^{2} \\
=-\omega^{2}\left(\beta_{1}\left(\frac{\beta_{1}-\beta_{2}}{\beta_{1}+\beta_{2}}\right)^{2}+\beta_{2}\left(\frac{2 \beta_{1}}{\beta_{1}+\beta_{2}}\right)^{2}\right) \\
=-\frac{\omega^{2} \beta_{1}}{\left(\beta_{1}+\beta_{2}\right)^{2}}\left(\beta_{1}^{2}+2 \beta_{1} \beta_{2}+\beta_{2}^{2}\right) \\
=\beta_{1} \omega^{2} \frac{\left(\beta_{1}+\beta_{2}\right)^{2}}{\left(\beta_{1}+\beta_{2}\right)^{2}}=I_{i} .
\end{gathered}
$$

