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Homework 10

Due date: Wednesday, April 24

Schnell’s law for particles

When modeled as a wave, a particle of mass m moving in a 2D region of potential
energy U has dispersion relation

ω(k) = Ak2 +B ,

where k2 = k2x + k2y and the constants

A =
h̄

2m
B =

U

h̄

are related to m and U by h̄, or Planck’s constant divided by 2π.

Consider a particle/wave that encounters a change in potential energy. The incident
wave is in a region with U = U1 and after crossing a planar interface is in a region
of potential energy U = U2. The wave’s wave-vectors in the two regions, k1 and k2,
make angles θ1 and θ2 with the normal to the interface.

1. Express Schnell’s law, the relation between θ1 and θ2, in terms of the wave’s
phase velocities in the two regions, vφ1 and vφ2 .

2. Express Schnell’s law, the relation between θ1 and θ2, in terms of the wave’s
group velocities in the two regions, vg1 and vg2 .

Reflection and transmission of a particle wave

Using the same particle/wave model as in the previous problem, calculate the trans-
mission and reflection amplitudes, T and R, of a normally incident (θ1 = 0) wave in
two cases:

(a) h̄ω = h̄A k21 + U1 > U2

(b) h̄ω = h̄A k21 + U1 < U2

Here are some things to keep in mind:

• In case (a) the total energy of the incident particle/wave in region 1 is greater
than the potential energy in region 2. Classically we know transmission is al-
lowed by energy conservation.
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• In case (b) the total energy of the incident particle/wave in region 1 is less than
the potential energy in region 2. Classically we know transmission is impossi-
ble.

• Set the amplitude of the incident wave equal to 1.

• T and R are in general complex numbers (the combination of a real amplitude
with a phasor).

• Though T and R are complex, their squared-magnitudes |T |2 and |R|2 are re-
lated to the probability the incident particle is transmitted or reflected.

• As in lecture, the boundary condition at the interface is that both the wave and
its normal derivative are continuous.

• You will find that a solution for case (b) is possible only if the wave in region 2
is evanescent.

• Though |R| > 0 for case (a) seems strange classically, this is explained by the
fact that U changes abruptly at the interface — on a scale small compared to
the particle’s wavelength.

• Be sure to check that |R| = 1 in case (b) !

Sound at an interface

Unlike water-surface waves (lecture) and particle waves (previous problem), the
boundary condition for sound at the interface of two media (e.g. air and water) is
slightly more complicated. For particle waves the boundary condition was to equate
both the wave amplitude and its normal derivative at the interface. This exercise will
show you how this is modified in the case of sound. You will also see how energy
(intensity) is conserved in the transmission/reflection process.

Consider normal incidence, in the positive y-direction. As usual, the incident wave
in the region y < 0 has unit amplitude,

s< = eik1y +Re−ik1y ,

and the time-dependence phasor e−iωt, common to all the waves, is left out. In the
region y > 0 there is only a transmitted wave:

s> = Teik2y .

The two wave vectors are related to the common frequency and the phase velocities
in the two media in the usual way:

ω = v1k1 = v2k2 .
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1. The wave amplitude s is the vector displacement of groups of particles, always
in the y direction for our normal incidence geometry,

s(y, t) = s(y, t)ŷ ,

where s is either the function s< or s>, depending on the sign of y. At a water-
air interface, for example, (the real part of) s<(0, t) is the displacement of the
surface of the water, while (the real part of) s>(0, t) is the displacement of the
surface of the air. But these two surfaces coincide, so

s<(0, t) = s>(0, t)

Use this to determine one equation for R and T .

2. The pressures on the two sides of the interface must also be equal at all times,
otherwise particles near the interface would experience infinite acceleration!
Use the relation you previous derived,

∇ · s = −δp
B
,

to obtain a second equation for R and T . This equation will involve both the
wave vectors and the bulk moduli (B1 and B2) in the two media.

3. Solve your two equations for R and T . Express these by only using the combi-
nations β1 = B1/v1 and β2 = B2/v2.

4. Check conservation of energy:

Ii = Ir + It .

The three terms are the intensities of the three waves (incident, reflected, and
transmitted). From lecture,

Ii = B1v1

(
∂si
∂y

)2

,

where
si = Re

[
eik1y−iωt

]
,

and similarly for the other two intensities. The algebra (for checking energy
conservation) is simplest if you work with the ratios β1 and β2.


