Assignment 7

Due date: Monday, March 20

Time-translation symmetry

Consider a Lagrangian with no direct time dependence,

\[\mathcal{L}(s) = \mathcal{L}(q_1(s), \ldots, q_N(s); \dot{q}_1(s), \ldots, \dot{q}_N(s)), \]

and where \(s \) parameterizes the continuous transformation

\[q_k(s; t) = q_k(t + s) \quad k = 1, \ldots, N. \]

(1)

This transformation is called “time-translation”.

Show that

\[\left. \frac{d\mathcal{L}(s)}{ds} \right|_{s=0} = \frac{dF}{dt} \]

for some function \(F \) (that you should determine). This establishes that \(\mathcal{L}(s) \) has time translation invariance.

By Noether’s theorem, Lagrangians with property (2) automatically have the conserved quantity

\[I = \sum_{k=1}^{N} p_k \left. \frac{dq_k(s)}{ds} \right|_{s=0} - F. \]

For the transformation (1) and the corresponding \(F \) you found above, the quantity \(I \) has another name — what is it?

Mass-on-a-wheel Hamiltonian

In this exercise you revisit the mass-on-a-rolling-wheel system of assignment 4. Obtain the Hamiltonian \(\mathcal{H} \) for this system. Sketch contours of constant \(\mathcal{H} \) in phase space and add arrows to indicate the direction of motion. At a particular value \(\mathcal{H} = E^* \) the topology of the phase space orbits changes. Find \(E^* \).
Parallel-transported dipole motion near the equator

In assignment 6 you found the following time evolution equations for a dipole constrained to move over the surface of a sphere by parallel transport:

\[
\cos \theta \ddot{\theta} = \sin \theta \dot{\theta}^2 - \omega_0^2 \cos^2 \theta \cos \alpha
\]

\[
\cos \theta \ddot{\alpha} = - \left(\sin \theta + 2 \frac{\cos^2 \theta}{\sin \theta} \right) \dot{\theta} \dot{\alpha} + \omega_0^2 \frac{\cos^3 \theta}{\sin \theta} \sin \alpha.
\]

Here \(\theta \) is the polar (latitude) angle of the dipole’s position on the sphere and \(\alpha \) is its angle relative to \(\hat{\theta} \) (south). The parameters \(I \) (moment of inertia) and \(\epsilon \) (dipole energy) have been combined to form a frequency: \(\epsilon/I = \omega_0^2 \). We will switch to a dimensionless time defined by \(t' = \omega_0 t \) so that when expressed in terms of \(t' \) even this parameter is absent (the quantity \(\sqrt{I/\epsilon} \) has become our unit of time). The prime on \(t \) is omitted below.

Find approximate solutions for the case where \(\theta(t) = \pi/2 + \beta(t) \) and both \(\beta(t) \) and \(\alpha(t) \) are small. The azimuth (longitude) angle \(\phi \) of the dipole can be recovered from the non-holonomic constraint

\[
\dot{\alpha} + \cos \theta \dot{\phi} = 0
\]

once you know \(\theta(t) \) and \(\alpha(t) \). You will find in the small \(\alpha, \beta \) solutions that approximately

\[
\phi(t) = ct + \phi_0
\]

for some constant \(c \). As a check, the character of the solutions changes when the magnitude of \(c \) exceeds a particular value.