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Assignment 6

Due date: Monday, March 13

Polymer model

Derive the equations of motion for the polymer chain model described in lecture, but
for the case of N = 3 mass points. Use the method of Lagrange multipliers and, by
solving for them explicitly, eliminate them from the equations of motion. You do
not have to solve the equations of motion.

For the N = 2 case analyzed in lecture, the single Lagrange multiplier turned out to
be constant in time. Is this also true for the two Lagrange multipliers in this problem?

Although solving for the λ’s will seem like a tedious exercise, and increasingly cum-
bersome for N > 3, the fact remains that these equations are linear in the λ’s and
lend themselves to efficient numerical (as opposed to algebraic) methods. In a large
scale simulation, say with N = 1000, the computer code would use a linear equation
solver to numerically calculate the λ’s in each time step.

Parallel-transported dipole

A point magnetic dipole of mass M moves frictionlessly on the surface of a sphere
of radius r. The kinetic energy of this two-degree-of-freedom system1 is

T =
1

2
I
(
θ̇2 + sin2 θ φ̇2

)
,

where θ and φ are the standard angles on the sphere and I = Mr2. The dipole in-
teracts with a static magnetic field — similar to the Earth’s — produced by a dipole
source at the center of the sphere and aligned with the poles in our spherical coordi-
nate system. The resulting potential energy of the interaction is

V = ε sin θ cosα,

where ε is the product of the source magnetic field at the equator (θ = π/2) and the
magnetic moment of the point dipole, and where the latter has direction

cosα θ̂ + sinα φ̂

1This was a class exercise in an early lecture.
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relative to the standard basis θ̂ (south), φ̂ (east). This system presents a new challenge
in that α is not a degree of freedom but is subject to the parallel-transport-of-vectors
constraint that in our coordinates is expressed by

α̇ + cos θ φ̇ = 0. (1)

Only when this condition is satisfied will the dipole move over the surface of the
sphere so that (as seen locally) it never rotates about the normal to the sphere.

(a) Consider an orbit where θ(t) = θ0 and φ(t) winds a complete circle around
the sphere. Show2 that the solid angle Ω enclosed by the orbit in the northern hemi-
sphere and the net change ∆α are related by

∆α + 2π = Ω.

(b) The fact made plain by the simple closed orbit above — that one cannot solve
consistently for α in terms of θ and φ — shows that constraint (1) is non-holonomic.
Starting with θ, φ and α as degrees of freedom, use the method of Lagrange multi-
pliers for non-holonomic constraints such as (1) to solve for the motion. You should
end up with two differential equations and one algebraic equation, and two of these
will involve a Lagrange multiplier function. Eliminate the Lagrange multiplier and
also φ, using (1), to arrive at a pair of second order differential equations for θ and α
(which you do not have to solve).

Newtonian solution of the “non-holonomic wheel”

This problem revisits the wheel with two degrees of freedom from lecture 10: our
introduction to non-holonomic constraints. Here we derive the equations of motion
by ordinary Newtonian methods as a check of the equations obtained in lecture using
the variational calculus.

The wheel has radius r, mass M , and moment of inertia I3 about its axis. It rolls
without slipping on a plane that is tipped by angle α relative to the horizontal. We will
use (x, y) coordinates on the tilted plane, where y increases in the uphill direction.
The axis of the wheel makes angle θ with respect to the x axis (so that for 0 < θ <
π/2 the wheel moves toward positive xwhen rolling downhill). The angle of rotation
about the axis, φ, is defined so that it increases when the wheel rolls downhill and
θ = 0.

(a) By considering torques about the axis through the wheel that is normal to the
plane, argue that

θ(t) = ωt+ θ0, (2)

2Use Archimedes’ hat-box theorem.
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where ω and θ0 are constants.

(b) Let y′ be the axis in the (x, y) plane that is instantaneously parallel to the
plane of the wheel (and coincides with y when θ = 0). Three forces, gravity, a normal
force, and a static friction force (rolling without slipping) combine to produce a net
force F ′ on the wheel that is purely along the y′ axis. Show that

F ′ = Fs −Mg sinα cos θ,

where Fs is the component of the static friction force acting along y′.

(c) Starting with (lecture 10)

ẋ = rφ̇ sin θ (3)
ẏ = −rφ̇ cos θ,

and the formula
ÿ′ = cos θ ÿ − sin θ ẍ,

for the acceleration along the y′ axis, show that

F ′ = Mÿ′ = −Mrφ̈. (4)

(d) Compute the torque about the axis of the wheel and show that

I3φ̈ = rFs. (5)

(e) Eliminate Fs from equations (4) and (5) and substitute (2) to obtain

(I +Mr2)φ̈ = rMg sinα cos (ωt+ θ0).

Integrating this equation with respect to t to obtain φ̇, substituting the result into (3),
and another integration produces x(t) and y(t) (you do not need to do this last part).


