Assignment 3

Due date: Friday, February 17

Rigid body simulation

A rigid body has principal moments

$$
I_{1}=1 \quad I_{2}=2 \quad I_{3}=3
$$

in appropriate units. The body's angular velocity in the body basis

$$
\boldsymbol{\omega}(0)=\omega_{1}(0) \hat{\mathbf{1}}(0)+\omega_{2}(0) \hat{\mathbf{2}}(0)+\omega_{3}(0) \hat{\mathbf{3}}(0)
$$

has value

$$
\omega_{1}(0)=1 \quad \omega_{2}(0)=1 \quad \omega_{3}(0)=0.9
$$

at time $t=0$ in appropriate units. Write a loop in your favorite computer language to time-evolve the body-frame angular velocity components by Euler's equations for one orbit. To decide when you have completed one orbit compute the distance (in angular-velocity space)

$$
\|\boldsymbol{\omega}(t)-\boldsymbol{\omega}(0)\|
$$

and terminate if this is less than 0.01 and $t>1$. Use $d t=0.001$ as the time increment in the loop. You should find a period close to $T=7.2$.
Add a few more lines to your loop that time-evolve the body basis vectors using

$$
\dot{\hat{\mathbf{1}}}=\omega \times \hat{\mathbf{1}} \quad \dot{\hat{\mathbf{2}}}=\omega \times \hat{\mathbf{2}} \quad \dot{\hat{\mathbf{3}}}=\omega \times \hat{\mathbf{3}} .
$$

Print out the body basis vectors after one period of the motion (at time $t=T$). Check that you still have an approximately orthonormal basis. Finally, find the rotation angle θ of the body after one period using the trace property of the rotation matrix U (that relates initial and final basis vectors):

$$
\operatorname{Tr} U=1+2 \cos \theta
$$

Frictionless ladder

Write down the equation of motion for the single degree of freedom, the angle θ, of the frictionless ladder leaning against a moving wall, as discussed in lecture. Show that the equation has a solution where θ is constant when the motion of the wall has a special form.

