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Assignment 13
Due date: Wednesday, May 10

Relativistic string equation of motion

Show that the Euler-Lagrange equations’,

=2 (am) +* (aam) = (g

applied to the Lagrangian of the relativistic string produces the equation of motion
0 = e(9,0°)(Dps), )

where
v =a’/L 2)

is a normalized rescaling of the anti-symmetric tangent-space tensor a®’, analogous
to the 4-velocity we define for the point particle.

Relativistic string as a non-linear modification of simple elastic string

Consider a relativistic string that resides only in the (z,y) plane and has infinite
extent in . The simple (non-relativistic) elastic string, in this geometry, is described
by a function y(z, t) that gives the displacement as a function of time ¢ at all positions
x. Suppose we likewise use (z,t) as the parameters of the relativistic string’s world-
surface:

s*(z,t) = (ct,x,y(x,t),0).

The action of a relativistic string with this parameterization is a functional of y(z, t):

Sl = [ £ 0m)ds i

Find the Lagrangian function £ and from that show that the resulting (Euler-Lagrange)
equation of motion for y is the wave equation for the simple elastic string with
additional cubic terms. Show that arbitrary running waves, y = f(z — ct) and
y = g(x + ct), are solutions, but that this does not extend to linear combinations
of right and left moving waves.

'Einstein summation convention for all repeated indices, greek and latin.
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Local conservation law for relativistic string

Show that the stress-energy tensor density for relativistic strings,

T (x) = /(E dpdq) v*7v,” 6 (x = s(p,q)),

is locally conserved, that is,
85Ta*3 (ac) =0.

Here v®? is the normalized tensor (2). Your derivation should mirror the derivation
in lecture of the conservation law for the point-particle stress-energy tensor. In par-
ticular, you will need to use the string’s equations of motion (1).



