Bessel function notes

In case you had trouble making out the equations on the videos, here they are again. The functions in theses notes that bear the dimension D as a subscript are natural generalizations of the usual Bessel functions that are specific to $D=2$. The definitions are based on angular averaging applied to plane waves. These notes only cover uniform angular averaging. There is a further generalization, to averages involving D-dimensional spherical harmonics, that is also useful occasionally.

The functions \mathcal{J}_{D} are simple angular averages of plane waves:

$$
\mathcal{J}_{D}(r, q)=\left\langle e^{i \mathbf{q} \cdot \mathbf{x}}\right\rangle_{\hat{\mathbf{q}}}=\left\langle e^{i \mathbf{q} \cdot \mathbf{x}}\right\rangle_{\hat{\mathbf{x}}}, \quad r=|\mathbf{x}|, q=|\mathbf{q}| .
$$

Even though these are always functions of the product $q r$, we use the two argument notation for consistency with the other Bessel functions (which need not be functions of $q r$). All the Bessel functions have a useful normalization property and satisfy a differential equation. Here they are for \mathcal{J}_{D} :

$$
\begin{gathered}
\mathcal{J}_{D}(0, q)=\mathcal{J}_{D}(r, 0)=1, \\
\left(-\nabla^{2}-q^{2}\right) \mathcal{J}_{D}=0 .
\end{gathered}
$$

In these notes ∇^{2} always acts on position and is therefore just the radial part of the Laplacian

$$
\nabla^{2}=\frac{1}{r^{D-1}} \partial_{r}\left(r^{D-1} \partial_{r}\right)
$$

when acting on the Bessel functions. Here are the first three \mathcal{J} functions:

D	$\mathcal{J}_{D}(r, q)$
1	$\cos q r$
2	$J_{0}(q r)$
3	$\sin q r / q r$

The \mathcal{K} family of functions is defined by an integral which averages plane waves not just by angle but also magnitude:

$$
\mathcal{K}_{D}(r, q)=A_{D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{e^{i \mathbf{k} \cdot \mathbf{x}}}{k^{2}+q^{2}}
$$

For these functions we use a Gauss's law motivated normalization convention, involving the surface area A_{D} of the unit sphere in D dimensions. To see this, first note that the integral satisfies the following differential equation:

$$
\left(-\nabla^{2}+q^{2}\right) \mathcal{K}_{D}=A_{D} \delta^{D}(\mathbf{x})
$$

Apart from the q^{2} term, this is the Poisson equation with a point source at the origin. Near the origin, where the solution diverges, the Laplacian term dominates the q^{2} term and the two equations have the same behavior. The nicest way to characterize the behavior is through the flux of the derivative (electric field) through a small sphere enclosing the origin (which also involves A_{D}):

$$
\partial_{r} \mathcal{K}_{D}(r, q) \sim \frac{-1}{r^{D-1}}, \quad r \rightarrow 0
$$

Here are the first three \mathcal{K} functions:

D	$\mathcal{K}_{D}(r, q)$
1	$\exp (-q r) / q$
2	$K_{0}(q r)$
3	$\exp (-q r) / r$

The third family of Bessel functions (with symbol recognizing Hankel) is defined by an integral similar to the \mathcal{K} family:

$$
\mathcal{H}_{D}(r, q)=\lim _{\epsilon \rightarrow 0^{+}} A_{D} \int \frac{d^{D} k}{(2 \pi)^{D}} \frac{e^{i \mathbf{k} \cdot \mathbf{x}}}{k^{2}-q^{2}-i \epsilon} .
$$

In addition to the reversal in the sign of the q^{2} term, a new feature is the infinitesimal ϵ in the denominator, without which the integral is not well defined. The differential equation satisfied by the \mathcal{H} functions (in the $\epsilon \rightarrow 0^{+}$limit) is the same as for the \mathcal{K} functions but with a change in sign of the q^{2} term:

$$
\left(-\nabla^{2}-q^{2}\right) \mathcal{H}_{D}=A_{D} \delta^{D}(\mathbf{x})
$$

Also, because only the source and not the q^{2} term determines the divergence at the origin, we have exactly the same behavior there:

$$
\partial_{r} \mathcal{H}_{D}(r, q) \sim \frac{-1}{r^{D-1}}, \quad r \rightarrow 0
$$

What the ϵ term does affect is the large r asymptotic behavior. In dimensions $D=1$ and $D=3$, where the integral can be evaluated explicitly in terms of elementary functions, this manifests itself in the selection of the pole when performing a contour integral. Here they are tabulated, along with the case $D=2$ for which there is no elementary function:

D	$\mathcal{H}_{D}(r, q)$
1	$i \exp (i q r) / q$
2	$i(\pi / 2) H_{0}(q r)$
3	$\exp (i q r) / r$

It is unfortunate that the standard Hankel function definition for $D=2$ - unlike J_{0} and K_{0} - is off by the factor $i(\pi / 2)$. But normalization conventions aside, what these functions have in common is a phase that advances with increasing r. The complex conjugates of these functions (equivalent to reversing the sign of ϵ in the definition) advance their phase with decreasing r. How the phase should advance comes up when solving the wave equation with a source. Say you are solving the scalar wave equation

$$
\left(-\nabla^{2}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \Psi(\mathbf{x}, t)=A_{D} \delta^{D}(\mathbf{x})
$$

From the differential equation above for \mathcal{H}_{D} you can see that this is solved by the function

$$
\Psi(\mathbf{x}, t)=e^{-i \omega t} \mathcal{H}_{D}(|\mathbf{x}|, \omega / c)
$$

where $\omega>0$ is the frequency of the wave. Normally when we have a source in a wave equation there is the understanding that all solutions - in particular wave packets - have the form of outgoing waves. It is for this reason that we use the phase-advance-with-increasing- r choice of \mathcal{H} function when our positive frequency time dependence convention is $e^{-i \omega t}$.

